産総研など 機能性酸化物ナノ粒子の高速合成法を開発

, , ,

2019年12月2日

 産業技術総合研究所と先端素材高速開発技術研究組合(ADMAT)は共同で、粒子径の揃った機能性酸化物ナノ粒子を高速に合成する手法を開発した。

 急速加熱が可能なマイクロ波反応容器を用いた水熱合成法により、光学特性が環境温度に依存して可逆的に変化する、サーモクロミック特性を示す二酸化バナジウム(VO2)ナノ粒子を、従来の30分の1程度の短時間で合成できる。さらに、粒子径が揃い、粒子径の小さなVO2ナノ粒子の合成も可能になった。

 VO2は次世代自動車のスマートウィンドウ用途での活用が期待されている。次世代自動車の航続距離を伸ばすには、冷暖房負荷を減らす必要があるが、視認性を確保するため、可視光域は調光せず、近赤外光域の熱線だけを調光する特性が求められる。また、設置やコスト面から自律的に調光する材料が望まれており、それがサーモクロミック特性をもつVO2である。

 ただ、通常加熱の水熱合成法では、溶液の温度を急速に上昇させることが困難である上、溶液温度が空間的に不均一になるため、サーモクロミック特性を示すVO2ナノ粒子を合成するには、30時間程度の時間を要し、粒子径の揃った小径のナノ粒子の合成は困難であった。

 マイクロ波を用いた水熱合成法では、極めて短時間で均一に溶液の温度を上昇させることができ、通常加熱よりも合成温度を高温にできるものの、通常加熱の水熱合成で用いてきた原料溶液では、目的外の結晶相も形成されてしまうため、良好なサーモクロミック特性を示すVO2ナノ粒子が合成できなかった。

 そこで、均一加熱・急速加熱・高温加熱という、マイクロ波水熱合成法の利点に適した原料溶液を調製することで、合成に要する時間を1時間以内まで短縮。さらに、短時間で合成が終了するため、粒子の成長を抑えられ、従来よりも小粒子径で粒子径が揃ったナノ粒子が合成できるようになった。

 なお、この研究開発は、新エネルギー・産業技術総合開発機構(NEDO)の受託事業による支援を受けて行った。

 

京大・産総研 合成ダイヤを使い量子センサーで世界最高感度 

, , ,

2019年10月8日

 京都大学と産業技術総合研究所(産総研)はこのほど、人工的に合成したリンドープn型ダイヤモンドを使い、NV中心(窒素―空孔中心)の室温での世界最長電子スピンコヒーレンス時間(T2)と、単一NV中心を用いた量子センサーの世界最高の磁場感度実現に成功したと発表した。

 京大化学研究所の水落憲和教授やエンスト・デイヴィッド・ヘルブスレブ特定研究員、産総研の加藤宙光主任研究員らの研究グループによるもの。

 NV中心とは、ダイヤモンドの格子中の炭素の位置に入った窒素と、それに隣接する炭素原子が抜けてできた空孔から成る不純物欠陥。また、T2とはスピンの量子的な重ね合わせ状態が、e分の1の大きさ(eは自然対数の底)になるまでの時間のこと。

 今回の成果により、n型半導体特性を生かした量子デバイスへの幅広い応用に道を開くことが期待される。高品質のダイヤモンドが人工的に合成できるようになり、これを使ったこれまでにないデバイスの実現が期待されている。

 中でも注目されるのがNV中心である。NV中心は室温でも長いT2を持ち、超高感度量子センサや量子情報素子の実現、量子センサの生命科学分野への応用の観点から注目されている。

 量子センサーではT2が長いほど感度が良くなり、今回の研究では、産総研で作製した高品質なリンドープn型ダイヤモンド中の単一NV中心のT2が、あるリン濃度で非常に長いことを見出した。

 リンは電子スピンを持つため磁気ノイズ源となり、リンをドープするとT2は短くなると考えるのが常識だが、今回の結果はそれに反するものだった。リン濃度だけを変えた試料での結果からも、一定量以上のリンがドープされた試料で世界最長のT2が測定され、リンドープの効果が確認された。

 n型ダイヤによるT2長時間化は、合成中に生成した空孔欠陥が電荷を帯び、磁気ノイズ源となる複合欠陥の生成が抑制されたためと考えられる。精密なノイズ測定から、今回の試料でのノイズ源は、リン以外の不純物欠陥の電子スピンであることが示唆され、それらを抑制することで、さらなるT2の長時間化も見込まれる。

 なお、この成果は8月28日に英国の国際学術誌「Nature Communications」にオンライン掲載された。

 

東大など 金属性プラスチック実現、イオンで電子を制御

, , , , ,

2019年9月10日

 東京大学と科学技術振興機構(JST)、産業技術総合研究所(産総研)はこのほど、世界で初めてイオン交換が半導体プラスチックでも可能であることを明らかにしたと発表した。

 イオン交換は古くから水の精製、タンパク質の分離精製、工業用排水処理などに応用されている。今回の研究では、極めて普遍的なイオン交換を使い、半導体プラスチックの電子状態を制御する革新的な原理を明らかにした。また、この原理を利用して、半導体プラスチックの電子状態を精密に制御し、金属的な性質を示すプラスチックの実現にも成功した。

 半導体中の電子の数やエネルギーは、半導体の結晶の中に少量の不純物(ドーパント)を添加することで制御することができる。不純物ドーピングはエレクトロニクスデバイスを支える最も重要な半導体技術で、半導体プラスチックにも適用されており、電気が流れるプラスチックである導電性高分子は、さまざまな電極材料や機能性コーティング剤として産業応用が拡大されつつある。

 しかし、ドーパント分子は大気中の水や酸素と反応して、ドーパントとしての機能が簡単に失われてしまうため、この酸化還元反応の制約を乗り越えることが望まれていた。

 東京大学大学院新領域創成科学研究科の山下侑特任研究員、竹谷純一教授(産総研・東大先端オペランド計測技術オープンイノベーションラボラトリ研究員など兼務)、渡邉峻一郎特任准教授(JST戦略的創造研究推進事業研究員など兼務)の研究グループは、これまで半導体プラスチックとドーパント分子の二分子系で行われていたドーピング手法に対し、新たにイオンを添加することで、従来よりも圧倒的に高い伝導性をもつ導電性高分子の開発に成功した。

 さらに適切なイオンを選定することで、イオン変換効率がほぼ100%になること、ドーピング量が増大することも明らかにした。このように高いドーピング量をもつ半導体は、金属のような電気抵抗の温度依存性を示すことも分かった。

 イオンは低い電圧で大量の電荷を駆動・蓄積でき、他の化学種との高い反応性をもつ。電子もイオンも電荷を運ぶ媒体であるため、両方の特徴を生かしたイオントロニクスの研究が盛んに行われているが、今回の研究で実現した金属性プラスチック内のイオン交換反応により、イオントロニクスデバイスの実現を大きく前進させることが期待されている。

産総研と阪大 世界最薄のフレキシブル生体計測回路を開発

, , , ,

2019年8月26日

 産業技術総合研究所(産総研)と大阪大学の関谷毅教授らの研究グループは、世界最薄・最軽量の生体計測用信号増幅回路の開発に成功した。

産総研用 写真 有機トランジスタを厚さ1マイクロメートルのプラスチックフィルム上に集積
有機トランジスタを厚さ1マイクロメートルのプラスチックフィルム上に集積

 生体の微弱な信号を、装着感なく、正確に計測できる差動増幅を薄くて柔らかい有機回路で実現。歩行などの外乱ノイズを除去できる機能を搭載したことで、手軽で高精度の生体計測が可能になり、高度な生体計測など新たな価値創造が見込まれる。

 例えば、計測回路の装着性と密着性が向上したことで、スポーツ時の激しい体の動きを伴う場面でも生体計測が容易になる。また、得られるリアルタイムで長時間の生体計測データを利用することで、病気の早期発見や治療の効率化、高齢者や患者の見守り、運動負荷の監視などへの活用が期待されている。

 同開発は、阪大産業科学研究所の関谷教授、植村隆文特任准教授(産総研特定フェロー兼任)を中心とした研究グループと、産総研が阪大内に設置した「産総研・阪大 先端フォトニクス・バイオセンシングオープンイノベーションラボラトリ(PhotoBIO‐OIL)」によるもの。両者の先端技術を融合することで、多彩な生体分子を計測する次世代バイオセンシングシステムの研究開発を行っている。

胸に貼ったフレキシブル生体計測回路
胸に貼ったフレキシブル生体計測回路

 ヘルスケアや医療用途の生体計測回路はこれまで、シリコントランジスタに代表される硬い電子素子で構成されていた。しかし、硬い電子素子が柔らかい肌などの生体組織に触れると炎症を起こしやすいため、日常生活での長時間の生体信号計測は困難だった。

 同研究グループは、電気が流れる半導体部分が有機材料の有機トランジスタを使用。柔軟な電子素子を、厚さ1㎛の薄くて柔らかいプラスチックフィルム上に集積し、装着感のないフレキシブル生体計測用回路を開発した。

 作製した回路は差動増幅回路とよばれる2つの入力端子をもつ信号処理回路。従来の1つの入力端子しかもたないシングルエンド型の増幅回路と比較すると、微弱な生体電位を増幅できるだけでなく、外乱ノイズを取り除くことも可能になった。

 人への生体計測の実施では、重要な生体信号である心電信号のリアルタイム・低ノイズ計測を実証した。両者は高精度な生体計測を通じ、医療費削減や人々のQOL向上といった、様々な社会課題の解決に貢献していく考えだ。研究成果は16日の英国科学誌「ネイチャー・エレクトロニクス」(オンライン)に発表した。

東大など 水の「負の誘電率」発見、高エネ密度の蓄電可能に

,

2019年3月15日

 東京大学と産業技術総合研究所(産総研)はこのほど、ナノ空間に閉じ込められた水の「負の誘電率」を発見した。これにより、高エネルギー密度の蓄電デバイスの開発につながることが期待される。

 電気を蓄えるデバイスの一種である電気二重層キャパシタ(EDLC)は、繰り返しの利用による劣化がほとんどなく、リチウムイオン電池に比べ高出力であるなどの特徴がある。

 この特徴を生かして、小惑星探査機「はやぶさ」に搭載された、小型移動ロボットの動力源として利用されるなど、幅広い用途で利用されており、今後、省エネルギー社会で電力の高効率な利用を可能にする蓄電デバイスとして、応用範囲の拡大が期待されている。

 EDLCは電気二重層と呼ばれる、電子とイオンがペアになる現象により電気を蓄える。このため、より効率的に電気を蓄えるためには、ナノ空間で高密度に電子とイオンを閉じ込める必要がある。

 これまで、イオンをナノ空間に閉じ込める際、イオンに結合している水分子も一緒に閉じ込められることが知られていたが、この水分子の特性は不明なままで、水分子が共存するナノ空間で、効果的に電子とイオンを閉じ込める方法論も知られていなかった。

 東大大学院工学系研究科の山田淳夫教授と大久保將史准教授らのグループは、産総研の大谷実研究チーム長、安藤康伸主任研究員との共同研究により、「マキシン」と呼ばれる層状化合物の層間ナノ空間に、リチウムイオンとともに閉じ込められた水分子が、通常の正の値ではなく「負の誘電率」を持つことを発見。従来未開拓であったナノ空間での水分子の異常な物性を明らかにした。

 さらに、この「負の誘電率」を利用すると、少ないエネルギーでイオンを高密度に蓄えることが可能となるため、高エネルギー密度のEDLCの開発にもつながることが示された。

 

昭和電工 AIでポリマーの設計・検証試行回数を大幅低減

, , , ,

2018年11月28日

 昭和電工と産業技術総合研究所(産総研)、先端素材高速開発技術研究組合(ADMAT)は27日、人工知能(AI)の活用により、要求特性を満たすポリマーを設計する際の試行回数を、約40分の1に低減できることが分かったと発表した。

 新エネルギー・産業技術総合開発機構(NEDO)の「超先端材料超高速開発基盤技術プロジェクト(超超PJ)」の委託事業として実施した。

 超超PJでは、従来の経験と勘を頼りにした材料開発からの脱却を目指し、マルチスケールシミュレーションやAIを積極的に活用することで、従来の材料開発に比べ、開発期間を20分の1に短縮することを目指している。

 3者はポリマー設計でのAI技術の有用性を実証するため、AIを活用して要求特性を満たすポリマーの探索を行った。モデルケースとして、耐熱性の指標であるガラス転移点に着目。構造とガラス転移点が判明しているポリマーの構造データ417種の中から、最もガラス転移点が高いポリマーをAIで探索し、発見までに要する試行サイクルを短縮できるか検証した。

 まず、無作為に抽出した10件のデータをAIに学習させた。学習データにはExtended Connectivity Circular Fingerprints(ECFP)という手法を応用し、ポリマーの構造的特徴を数値化したものを使った。

 次に、残りの407件の中から、最もガラス転移点の高いポリマーを、ベイズ最適化によって予測・検証を繰り返し、求めるポリマーを発見するまでの試行回数を調べた。データの選び方で結果が変わることを防ぐため、初期データを変えた試験を500回実施し、試行回数の平均値を評価した。

 この結果、平均4.6回という極めて少ない試行で、最もガラス転移点の高いポリマーを発見することに成功した。この値は、無作為にポリマーを選出した場合と比べ約40分の1で、AIによるポリマー設計の有用性を裏付ける結果と考えられる。

 今後は、同技術をさらに高度化させ、実際の機能性材料開発に活用できるよう開発を進めていく。

日揮など 再生可能エネ由来水素でアンモニア合成などに成功

, , , , ,

2018年10月24日

 日揮と産業技術総合研究所(産総研)で構成するグループは、内閣府総合科学技術・イノベーション会議の戦略的イノベーション創造プログラム(SIP)「エネルギーキャリア」のもと、共同で研究を進めていた再生可能エネルギーによる水の電気分解で製造した水素を原料とするアンモニアの合成と、合成したアンモニアを燃料としたガスタービンによる発電に世界で初めて成功した。

 日揮・産総研グループは、水のエネルギーキャリアとしてのアンモニアの優位性に基づき、2014年から「新規アンモニア合成触媒および再生可能エネルギーによる水の電気分解で得られた水素を原料としたアンモニア合成プロセス」の研究を進めてきた。

 今年5月には、産総研・沼津工業高等専門学校・日揮触媒化成と共同で、触媒に使用する担体や触媒の製造方法を改良することに成功。日揮グループは産総研福島再生可能エネルギー研究所(郡山市)の敷地内に建設した同触媒と一時的な水素供給用に設置した高純度水素ガスボンベを用いてアンモニアを合成する実証試験装置により、実証試験(アンモニア生産能力日量20kg)を開始した。

 新たに開発した触媒が低温・低圧で高い活性を持つことを確認するとともに、再生可能エネルギーの使用時に課題となる急な運転条件の変更によるアンモニア製造量の変動に対応できることが検証できた。

 これを受け、同社グループは実証試験時に使用した高純度水素ガスボンベの代わりに、太陽光発電設備で発電した電力による水の電気分解を通じて製造した水素を用いてアンモニアの合成試験を行い、合成したアンモニアを燃料にガスタービンによる発電試験(発電量47kW)を実施した。

 なお、水素製造の同試験では産総研福島再生可能エネルギー研究所、アンモニアガスタービン発電の同試験ではSIPの「アンモニア直接燃焼」チームが協力。同社グループによる再生可能エネルギーを活用した水素・アンモニアの製造と、これを燃料とした発電は世界初で、製造から発電に至るまでCO2を排出しないアンモニア(CO2フリー)を活用したエネルギーチェーンの確立に前進した。

 今後も同社グループは、再生可能エネルギーを活用したアンモニアの製造コスト低減に向けて研究開発を行うとともに、SIPエネルギーキャリア研究が2030年を目途に推進する「日本が革新的で低炭素な水素エネルギー社会を実現し、水素関連産業で市場をリードする」ビジョンの達成を通じて、エネルギーの多様化と低炭素社会の実現に向けて積極的に取り組んでいく考えだ。