東レ MIの活用により短期間でCFRPを開発

, , ,

2021年12月2日

難燃性と力学特性を両立、航空機の軽量化に貢献

 東レは30日、マテリアルズ・インフォマティクス(MI)技術を活用し、優れた難燃性と力学特性をもつ次世代の航空機用途向け炭素繊維強化プラスチック(CFRP)を短期間で開発したと発表した。今後実証を進め、航空機用途をはじめ、自動車、一般産業用途向けCFRPへの幅広い展開を図り、CFRPの需要拡大を推進していく。

 CFRPは、高い比強度や比弾性率、優れた疲労特性や耐環境特性に基づく高い信頼性をもつことから、航空宇宙分野で用途が拡大している。一方で、CFRPは金属に対して、靭性や耐衝撃性、また難燃性や導電性など力学特性以外の機能面で不利な項目がある。これをカバーするため、付加的な材料や工程が必要となるケースがあり、特に防火性の観点からCFRPの難燃性向上が望まれていた。

 しかし、難燃性と力学特性という異なる性質の双方を設計し最適化する過程では、膨大な実験データが必要となる。従来、CFRP設計段階では、各特性の評価で30~60日、特性の組み合わせ評価で60~120日かかるなど2~3年の期間が必要となることから、開発期間の抜本的な短縮が大きな課題となっていた。

 こうした中、東レは、従来進めてきたデータとデジタル技術を活用して競争力を強化するDXの一環として、新たにMI技術をCFRP設計へ導入。要求される特性から材料設計を絞り込む逆問題解析手法に、東北大学との共同研究で導入した自己組織化マップ(SOM)をツールとして用いた。

 CFRPを構成する多種のエポキシ樹脂とフィラーの組み合わせデータベース(DB)を構築し、SOMにより似た特性をもつグループを作り可視化することで、複数の材料群から目的とする特性を達成するための適切な組み合わせ(ターゲットエリア)を抽出。これにより、少ない実験回数で難燃性と力学特性を両立するCFRPのためのマトリックス樹脂の設計に成功し、短期間で材料を開発する技術を確立した。この技術を用いたCFRP中間基材であるプリプレグの開発ではDBの構築に1年、モデル樹脂設計および評価に1~2ヵ月程度しかかからず、開発期間を大幅に短縮している。

 また、同開発品は、圧縮強度や耐熱性などの力学特性を航空機向けの現行材と同等に維持しつつ、航空機材料の難燃性の指標の1つである燃焼時の発熱量(Heat Release Rate)を現行材対比で35%低減した。難燃性付与材が省略できることに加え、薄板での機体構造CFRP化が可能となり、軽量化が求められる次世代航空機において、アルミ板からの代替が進むことが期待される。

 同社は今後、同様の逆問題解析手法を熱伝導性、電気伝導性などに展開し、高機能プリプレグの設計を進める計画で、多様化する航空機部材をはじめとする自動車、一般産業用途などのニーズに応えていく。

 なお、今回の成果の一部は、内閣府総合科学技術・イノベーション会議(CSTI)の戦略的イノベーション創造プログラム(SIP)「統合型材料開発システムによるマテリアル革命」(管理法人:科学技術振興機構)により得られている。

三井化学と日立製作所 材料開発を高速化するMIの実証開始

, , ,

2021年6月29日

 三井化学と日立製作所は28日、日立が開発した人工知能(Ai)を活用したマテリアルズ・インフォマティクス(MI)技術を、実際の新材料開発に適用する実証試験を開始すると発表した。同実証試験に先立ち、日立の開発技術を三井化学が提供した過去の有機材料の材料開発データで検証したところ、高性能な新材料の開発に必要な実験の試行回数が従来のMIと比較し約4分の1に短縮できることを確認。両社は今年度中をめどに、新製品・素材開発に向けた同技術の導入・成果を検証する技術実証を行い、来年度から実用化を目指す考えだ。

従来技術との比較。少量の実験データでも高性能材料の化学式を自動生成できる深層学習技術
従来技術との比較。少量の実験データでも高性能材料の化学式を自動生成できる深層学習技術

 新製品の開発は事業活動の要となるものの、開発までには課題抽出、基礎研究から、スケールアップといった実証実験など、多大な時間とコストを伴う。今回の実証を通じて、三井化学が過去から蓄積している膨大な開発に関する知見と日立が提供するデジタル技術とを融合することで、新製品開発に掛かる時間・コストの大幅な削減が期待されている。

 日立は、AIやシミュレーション技術などを活用して新材料を探索するMIの高度化に向け、これまで大量の実験データを必要としていた有機材料開発に、少量の実験データでも高性能な新材料の候補化合物(化学式)を発案することができる深層学習技術を新たに開発した。

 その特長は①「入れ子型」AIと、②高性能な化合物の生成を加速する成分調整方式。①では、大規模なオープンデータ(化学式を文字列で表現したデータ群)で学習したAIの内側に、実験データで学習したAIを埋め込む入れ子型構造により、少ない実験データでも新材料開発に活用できる。また②では、外側のAIで文字情報である化学式を一度数値情報に変換し、内側のAIでこの数値情報から性能に影響する成分を分離・調整することで、高性能な化合物を表現する数値情報を新たに作成。さらにそれを再び化学式に変換し直すことで高性能な化学式を高確率で生成し、実験回数を削減する。

 三井化学は今後、DXを通じた社会課題解決のため、革新的な製品やサービス、ビジネスモデルを迅速に創出し社会に提供していく。一方、日立はDXを加速させる同社の「Lumada(ルマーダ)」ソリューションである「材料開発ソリューション」に、今回実証する高速化技術のラインアップ化・水平展開を図る。両社は素材開発の協創を推進し、持続可能な社会の実現に貢献していく。