日本触媒はこのほど、理化学研究所との共同研究チームが、バイオマス由来の難重合性モノマーの重合について、効率的に高分子量化できる重合システムを開発し、高性能なポリマーを得ることに成功したと発表した。
バイオマス資源からは、不飽和炭素‐炭素二重結合をもつ脂肪族化合物や芳香族化合物が数多く得られる。ケイ皮酸モノマーやクロトン酸モノマーは、β位に置換基があるα,β‐不飽和カルボン酸化合物(β置換アクリレート)に分類することができる。これらを重合して得られるポリマーはモノマー単位当たり2つの光学中心をもち、高度に立体規則性を制御することができるため、バイオマス由来の高性能・高機能な新規樹脂素材の創出が期待される。
しかしながら、β置換アクリレートは、β位置換基の立体的、あるいは電子的要因で通常のラジカル重合法では高分子量化が困難な難重合性モノマーの1つ。また、数少ない重合例では、工業的には実現困難な反応条件を必要とするなど、実生産への多くの課題もあった。
両者の共同研究チームは、β置換アクリレートの重合に対して、モノマーを活性化させることで重合を進める点が特徴的である有機酸触媒を用いたグループトランスファー重合(GTP)技術が適用可能であることを見出だした。そして、技術開発を進めるとともに、重合メカニズムを解明することで、高分子量化を阻んでいた要因を特定し、重合を効率化するための知見を見出だした。
さらに、使用する有機酸触媒や開始剤の置換基構造を検討して重合条件を最適化することで、温和な条件下で効率的に高分子量化を実現する重合技術の開発に成功した。得られたケイ皮酸系ポリマーは、ポリカーボネートと同等、あるいはそれ以上の耐熱性を示すとともに、多くの薬剤への耐薬品性を示す。また、機械的性質については、高強度な材料への展開が期待できる。
一方、クロトン酸系ポリマーは、ポリメチルメタクリレート(PMMA)に匹敵する透明性をもちつつ、メタクリレートポリマーに比較して高い耐熱性、および耐薬品性を示す。これらの特徴は、高度に制御された立体規則性によって発現する液晶性に起因するものであると考えられる。両者は今後、生産技術の確立を進めるとともに、ポリマー用途開発を加速していく。