東京大学と産業技術総合研究所(産総研)、パイクリスタル社(ダイセル子会社)の共同研究グループはこのほど、印刷法で製造した大面積・高性能有機半導体単結晶ウエハー表面に非破壊で高選択的に二次元電子系を形成するドーピング手法を開発し、従来の金属製歪みセンサーの10倍程度の感度をもつ歪みセンサー開発に成功したと発表した。
有機半導体は軽量性、柔軟性、印刷適合性などに優れ、シリコン半導体に代わる安価で大量生産可能な次世代電子材料として期待される。半導体の電子状態の制御には不純物ドーピングが不可欠だが、ユニークな形やサイズの有機半導体分子とドーパント分子が複合化すると単結晶性が乱れ、その高い電子性能は維持できない。
今回、有機半導体単結晶薄膜をドーパント分子溶液に浸漬するだけで表面がドーパント分子と反応し、有機半導体の単結晶性を維持したまま表面に高密度の二次元電子系を形成させることに成功。有機半導体単結晶デバイスの抵抗を精密に制御でき、抵抗値を7桁以上下げられる。結晶性が保持されているため、単結晶性に特有の巨大歪み応答効果も現れ、外部応力に応じて抵抗値が変わるフレキシブル歪みセンサーが実証された。
この技術により有機半導体を厚さ7㎛のフレキシブル基板上に印刷し、曲面に貼り付け可能な歪みセンサーを開発した。感度は0.005%程度と従来の金属製歪みセンサーの約10倍。繰り返し使用に耐えることも確認した。さらに、より高性能な有機半導体材料やドーパント材料の開発により、安価で大量生産可能な歪みセンサーデバイス、特にIoT社会に必要なRFIDタグやトリリオンセンサーユニバースへの貢献が期待される。
パイクリスタル社は高い安定性と性能をもつ有機半導体単結晶の成膜技術を独自開発し、フィルム状でフレキシブルな有機半導体デバイスを開発してきた。今回の歪みセンサーと有機半導体デバイスの事業化に向けた量産体制の確立を進めており、有機半導体デバイスの開発・マーケティング活動を加速し、新たなソリューションを提案していく考えだ。