日本触媒 有機ELの省電力化などに貢献、電子注入材を開発

, , ,

2021年5月19日

 日本触媒はこのほど、NHKと共同で有機ELの低消費電力化・長寿命化・低コスト化に寄与できる新しい電子注入材料を開発したと発表した。これまで有機ELでは、電極金属から有機材料への電子の供給をスムーズに行うことを目的にアルカリ金属化合物を用いてきたが、これらは有機材料との反応性が高いため有機EL素子の劣化の要因とされてきた。

 これらの課題に対し両社は、電極金属と有機材料との間に大きな分極を生じさせることで、有機ELの劣化要因となるアルカリ金属化合物を用いることなく効率的に電子を注入できる技術開発を推進。今回、この分極型電子注入技術の開発で得られた知見を活用して、より効率的に電子注入を行える電子注入材料を開発した。

 この新しい材料は、フッ化リチウムやリチウム―キノリノール錯体のようなアルカリ金属からなる一般的な電子注入材料に対して同等以上の特性を示し、有機ELの低消費電力化とそれによる長寿命化への寄与が期待される。さらに同開発品を用いることで、これまで困難とされていた陰極から発光層への直接電子注入を容易にできることも見出だした。

 一般に有機ELでは、陰極から供給された電子を発光層に届けるために電子輸送材料が必要とされてきたが、これが不要になることで有機EL構造の簡素化が可能となり、有機ELを構成する材料の削減や成膜プロセス短縮による低コスト化が期待できる。

通常の有機ELの構成
開発品を用いた有機EL構成例

日本触媒 有機電子デバイス高機能化に貢献、新技術を開発

, ,

2020年9月1日

 日本触媒は31日、NHKと共同で有機ELの低消費電力化と長寿命化に寄与し、様々な有機エレクトロニクスデバイスの高性能化にも用いることのできる新しい電子注入技術を開発したと発表した。

 これまで、有機ELをはじめとする有機エレクトロニクスデバイスでは、電極金属と有機材料の間での電子のやり取りをスムーズに行うことを目的にアルカリ金属などの材料が用いられてきたが、これらは有機材料との反応性が高いことからデバイスの劣化の要因とされている。またアルカリ金属は空気中の酸素や水分に弱く厳重な封止を必要とするため有機薄膜デバイスのフレキシブル化に対し課題となっていた。

 こうした中、両社は、電極金属と有機材料との間に大きな分極を生じさせる配位結合を用いた電子注入技術により、アルカリ金属のような反応性の高い材料を用いることなく有機ELの低消費電力化と長寿命化を実現できることを見出だした。

 この配位結合による新たな分極型電子注入技術は、有機ELの低消費電力化や長寿命化へ資することはもちろん、電子の取り出し技術へも応用することで、有機太陽電池のエネルギー変換効率の向上や有機センサーデバイスなどの高感度化などへも寄与できると見られ、フレキシブルデバイスの早期実現への貢献が期待される。

 また、日本触媒が開発中の「iOLED」フィルム光源に対しても、既存製造設備への適用が可能となり製造プロセスの簡略化による大幅なコスト削減が期待できる。同技術に用いた材料は塩基性の有機化合物で、種々の金属元素への配位によって安定な錯体を形成し、その配位力の強さに応じて金属原子との間で電荷の偏り(分極)が発生する。

 同社はこの有機化合物について数種類の誘導体を設計・比較することで、配位力の強さと電子注入性の間に相関があることを見出だし、有機化合物と金属を含む陰極との界面で生じる分極が電子注入を促進していることを明らかにした。

 なお、今回の研究成果は、7月24日に「Nature Communications」誌に掲載された。

有機エレクトロニクスデバイス 分極型電子注入技術
有機エレクトロニクスデバイス 分極型電子注入技術

日本触媒など 紙より薄い光源を長寿命化、電子注入技術開発

, ,

2019年9月18日

 日本触媒は17日、NHKと共同で「紙より薄いフィルム光源(「iOLED」フィルム光源)」をさらに長寿命化させる新しい電子注入 (電極から発光などを担う有機材料に電子を入れること)技術を開発したと発表した。

発光するiOLED
発光するiOLED

 紙より薄く、柔軟性の高いiOLEDフィルム光源は、NHKと共同で開発している大気中の酸素や水分に強く安定性の高い有機ELの材料と素子技術(iOLED技術)により実現している。しかしながら、さらなる長寿命化には、一定の酸素や水分の存在下で高効率な電子注入を長期間維持することが課題だった。

 今回、2種類の有機材料間の水素結合を利用した新規有機EL用電子注入技術の開発により、課題を克服。これにより、iOLEDフィルム光源は、素子寿命と大気安定性を従来よりも高水準で両立できるようになり、使用用途の拡大が期待される。

 一般に電子輸送層の電子注入機能付与のために用いられるアルカリ金属は、高い電子注入性を示す一方、大気安定性に乏しく、有機ELの劣化の主要因だった。今回、アルカリ金属の代わりに有機塩基性材料を添加した、分極型の有機EL用材料を開発した。

 この材料は高い大気安定性と分極による高い電子注入性を示すため、酸素や水分を透過しやすいフィルム上に有機ELを形成しても、高い電子注入が長期間維持される。さらに、有機塩基性材料の添加により水素結合が形成され、これにより生じる分極が、電子注入に重要な役割を果たしていることを世界で初めて確認した。

 今後、同技術をiOLEDフィルム光源に適応することで、発光色の精密な制御や長寿命かつ極薄膜素子の実現などiOLEDフィルム光源の高機能化はもちろん、プロセスの簡略化による低コスト化も期待できる。

 同社は、このiOLEDフィルム光源をもって、世界を明るく照らしていくとともに、今後も独創的で優れた技術を開発・企業化し、企業理念「テクノアメニティ、私たちはテクノロジーをもって人と社会に豊かさと快適さを提供します」の実現に注力していく考えだ。なお、iOLEDフィルム光源は、パシフィコ横浜で開催されるケミカルマテリアル Japan 2019(9月18~19日)で同社ブースにて、展示する。