東京大学ら ポリマー半導体への分子ドーピングが制御可能に

, , , , ,

2020年12月14日

 東京大学、産業技術総合研究所(産総研)、広島大学などによる共同研究グループは、世界で初めてポリマー半導体の立体障害と分子ドーピングの相関を明らかにし、ポリマー半導体の「隙間」サイズを制御することでドーピング量を100倍向上させることに成功した。

 半導体の結晶中に不純物(ドーパント)を添加することで、半導体中の電子数やエネルギーを精密に制御できる。 シリコン半導体のドーピングは、シリコン原子を別の原子に置換して行うが、ポリマー半導体のドーピングはユニークな形・サイズのポリマー分子とドーパント分子を複合化する必要があり、複雑な立体障害を制御する必要がある。

 同グループは結晶性ポリマー半導体へのドーピングに着目し、結晶性ポリマー半導体1ユニット当たり1ドーパント分子を高密度に複合化する技術を開発したが、ドーピング効果を最大化する分子設計指針は明らかではなかった。

 今回、結晶性ポリマー半導体のナノスケールの「隙間」に着目し、立体障害と分子ドーピングの相関を系統的に調査した結果、電気を流す骨格に周期的に付いた側鎖の密度を精密に制御し、隙間を適切に拡張することで、分子ドーピング量を100倍程度増加させることに成功。隙間を拡張した結晶性ポリマー半導体は従来の3倍程度の体積のドーパント分子を複合化でき、ほぼ最密充填された分子複合体を作製することにも成功した。

 結晶性ポリマー半導体の隙間とドーパント分子サイズの関係が明らかとなり、これまでにない様々な分子複合体材料の設計指針が明確になった。また、最密充填した分子複合体は金属のように電気が流れやすく、熱耐久性や環境耐久性も向上することが分ってきた。今後、異なる分子の複合化という単純な化学操作による革新的な電子・イオン材料の創製が期待される。