京都大学と産業技術総合研究所(産総研)はこのほど、人工的に合成したリンドープn型ダイヤモンドを使い、NV中心(窒素―空孔中心)の室温での世界最長電子スピンコヒーレンス時間(T2)と、単一NV中心を用いた量子センサーの世界最高の磁場感度実現に成功したと発表した。
京大化学研究所の水落憲和教授やエンスト・デイヴィッド・ヘルブスレブ特定研究員、産総研の加藤宙光主任研究員らの研究グループによるもの。
NV中心とは、ダイヤモンドの格子中の炭素の位置に入った窒素と、それに隣接する炭素原子が抜けてできた空孔から成る不純物欠陥。また、T2とはスピンの量子的な重ね合わせ状態が、e分の1の大きさ(eは自然対数の底)になるまでの時間のこと。
今回の成果により、n型半導体特性を生かした量子デバイスへの幅広い応用に道を開くことが期待される。高品質のダイヤモンドが人工的に合成できるようになり、これを使ったこれまでにないデバイスの実現が期待されている。
中でも注目されるのがNV中心である。NV中心は室温でも長いT2を持ち、超高感度量子センサや量子情報素子の実現、量子センサの生命科学分野への応用の観点から注目されている。
量子センサーではT2が長いほど感度が良くなり、今回の研究では、産総研で作製した高品質なリンドープn型ダイヤモンド中の単一NV中心のT2が、あるリン濃度で非常に長いことを見出した。
リンは電子スピンを持つため磁気ノイズ源となり、リンをドープするとT2は短くなると考えるのが常識だが、今回の結果はそれに反するものだった。リン濃度だけを変えた試料での結果からも、一定量以上のリンがドープされた試料で世界最長のT2が測定され、リンドープの効果が確認された。
n型ダイヤによるT2長時間化は、合成中に生成した空孔欠陥が電荷を帯び、磁気ノイズ源となる複合欠陥の生成が抑制されたためと考えられる。精密なノイズ測定から、今回の試料でのノイズ源は、リン以外の不純物欠陥の電子スピンであることが示唆され、それらを抑制することで、さらなるT2の長時間化も見込まれる。
なお、この成果は8月28日に英国の国際学術誌「Nature Communications」にオンライン掲載された。