産業技術総合研究所(産総研)はこのほど、接着力が強く、光や熱の刺激で容易に剥離できる解体性プライマーを開発した。化学結合の開裂を利用するため、刺激を加える前は基材・接着剤間の化学結合で接着力は強く、光や熱などの刺激で化学結合が切断し簡単にきれいに剥がれる。
従来の光液化-固化型接着剤は、接着成分の形状や硬さの変化を利用するため、加熱や光照射に多くのエネルギーが必要な上、高い接着力と剥離性能の両立が困難であった。新しいプライマーは接着力が強く、わずかなエネルギーで剥離できる。
アントラセンは特定波長の光を吸収して二量体となり、高温もしくは紫外光(波長300㎚以下)で開裂して元のアントラセンに戻る。今回、ガラス基板に化学的に吸着するアルコキシシリル基を導入したアントラセンに波長405㎚の光を照射し、光二量化させた。
その溶液をガラス基板に塗布・乾燥して解体性プライマー層を形成。その表面に湿気硬化型接着剤で柔軟な樹脂フィルムを貼り合わせて剥離試験を行った。90度剥離強度はプライマー不塗布時の約2倍に増加し、ガラス基板表面には接着剤が残った。180℃で1分間加熱すると剥離強度は60%低下し、接着剤はガラス基板表面には残らずきれいに剥離した。
また波長254㎚の光を1分間照射した場合、剥離強度は33%低下し、使った光照射エネルギーは30mJ/㎠で、光液化-固化型接着剤の場合の5%未満だ。剥離後のガラス基板表面にアントラセン単量体が確認されたことから、プライマーの分解により剥離が進行したことがわかった。
この解体性プライマーにより異種素材の接着・解体ができるため、リサイクルやリユースの促進に有効だ。接着以外にも、インクの除去や、刺激に応じて摩擦力が変化する表面処理剤などへの応用が期待される。
今後、プライマーの構成分子を検討し接着強度の向上を目指すとともに、刺激の種類と条件や適用可能な基板の種類を拡大させ、省エネルギーで汎用性の高い剥離技術として展開できるよう、研究開発を進めていく予定だ。