東大・産総研など 世界最速の有機トランジスタ実現

, ,

2020年3月24日

 東京大学と産業技術総合研究所(産総研)、物質・材料研究機構の共同研究グループはこのほど、有機半導体単結晶の薄膜上で、チャネル長1㎛スケールの微細加工手法を新たに開発した。

 高移動度と短チャネル化を同時に達成したことで、同研究グループが持つこれまでの世界記録を2倍程度更新し、世界最速となる38M㎐の遮断周波数を達成した。また、この有機トランジスタには交流信号を直流信号に変換する整流性があり、100M㎐でもその整流性が失われないことを実証した。

 世界中で有機トランジスタの高速化が進められている中、同研究グループは超短波帯で動作する有機トランジスタの開発に世界で初めて成功した。

 有機半導体は有機溶媒に溶かしたインクから、印刷プロセスにより柔軟性のあるデバイスを作製できることから、次世代半導体材料として期待されている。同研究グループではこれまでに、厚さわずか数分子層(10㎚程度)からなる有機半導体単結晶超薄膜を、大面積で塗布可能な印刷手法を開発している。このような高品質の有機単結晶薄膜では、高い移動度が実現されており、有機トランジスタの高速化に極めて有望だ。

 半導体集積デバイスの応答周波数は、論理演算を担うトランジスタの移動度と、そのチャネル長に依存する。微細加工手法として、フォトレジストを用いたリソグラフィが広く使われているが、多くのフォトレジストは有機半導体薄膜にダメージを与えることが知られており、有機トランジスタでは、リソグラフィによる高移動度と短チャネル化を両立することは困難だった。

 今回、同研究グループは有機半導体単結晶の薄膜上に、フッ素系高分子膜を薄くコーティングすることで、有機半導体でのダメージフリーリソグラフィ手法を新たに開発し、1㎛スケールの微細加工を達成。超短波帯で動作する有機トランジスタの開発に世界で初めて成功した。

 物流管理などに広く用いられている、RFIDタグの通信周波数である13.56M㎐より十分に大きな値であることから、今回作製したデバイスは、無線タグの給電に十分応用可能なレベルに達していると言える。

 さらに、超短波帯はFMラジオ放送やアマチュア無線などの電波として利用されているが、将来、応答周波数がさらに増加することで、超短波帯を利用した長距離無線通信が可能な有機集積回路の実現が期待される。

 また、簡便な印刷プロセスで量産できることから、今後のIoT社会を担う物流管理に用いられる低コストの無線タグや、電磁波から電力を供給する無線給電システムへの幅広い展開が考えられる。

 

産総研 ゴム複合材料を開発、金属並みの熱伝導性を実現

, ,

2020年3月6日

 産業技術総合研究所(産総研)はこのほど、ゴムのように柔軟で、金属に匹敵する高い熱伝導性を示すゴム複合材料を、東京大学と開発したと発表した。

 産総研のタフコンポジット材料プロセスチームと、東大大学院新領域創成科学研究科の寺嶋和夫教授らは、カーボンナノファイバー(CNF)・カーボンナノチューブ(CNT)の2種類の繊維状カーボンと、環動高分子のポリロタキサンを複合化させることで、金属並みの熱伝導性を実現した。

 今回開発したゴム複合材料は、フレキシブル電子デバイスの熱層間材や放熱シート、放熱板などへの応用が期待される。実験ではポリロタキサン中にフィラーとして、サイズの異なる2種類の繊維状カーボン(CNFとCNT)を分散させた。

 CNFは太さ200㎚で長さ10~100㎚、CNTは太さ10~30㎚で長さ0.5~2㎚。ゴム材料への繊維状カーボンの分散性の改善と、複合材料中の熱伝導ネットワークの形成が、高い熱伝導性のカギと考えられていることから、分散性改善のため、CNFとCNTを重量比9対1の割合で塩化ナトリウム水溶液に分散し、独自に開発した流通式水中プラズマ改質装置を通して表面改質を行った。

 次に、このCNF/CNT混合物を溶媒のトルエン中で、ポリロタキサン・触媒・架橋剤と混合した後、交流電界をかけながら架橋反応させてゲルを作製。得られたゲルをオーブンで加熱して溶媒を取り除き、フィルム状の複合材料を得た。

 この複合材料内部の電子顕微鏡像では、表面改質により繭状の凝集体がほぐれ、加えた電界の方向にCNFが配列していた。さらに、配列した大きなCNFに小さなCNTが巻き付き、CNF間をつなぐように分散していた。少量のCNTがCNF同士をつなぐことで、複合材料全体にわたる熱伝導のネットワークが形成され、高い熱伝導性が実現したと考えられている。

 今後はCNFの配向条件や改質条件を最適化して、熱伝導性と柔軟性の向上を図るとともに、フィラーの3次元構造の観察や解析を通して、複合材料の構造と特性との数理的関係の解明を進める。さらに、企業との共同研究により、部材とデバイスへの展開・実用化を図る。

 

産総研 超広帯域発光素子を開発、明るさと長寿命実現

,

2020年2月12日

 産業技術総合研究所(産総研)は小型ハロゲンランプをしのぐ明るさと、1000時間以上の長寿命性を併せ持つ超広帯域発光素子を開発した。この発光素子は350㎚の近紫外線から1200㎚の近赤外線までの波長範囲の光を発光できる。

 この発光波長範囲は、広く利用されている光センサーや撮像素子(CCDなど)が感じることができる範囲(感光域)とよく一致しており、それら「機械の眼」にふさわしい効率の良い光源と言える。

 様々な方式による広帯域発光素子の開発が世界的に行われている中で、今回開発した素子は、紫外LEDと、そのLEDの光で励起され、さまざまな波長の光を発する複数の蛍光体を組み合わせて作製した。蛍光体を取り巻くバインダー材料や蛍光体層の物理的構造を改良することによって、実用製品に適用できる明るさ(発光強度)と安定性(寿命)を実現した。

 その結果、小型のハロゲンランプを光源とする超小型計測器や分析機器、例えば、鮮魚や精肉の脂乗りを分析するポータブル分析機器や、果実の糖度を非破壊で計測する機器などの上位互換の代替光源として使用できるようになった。この新たな光源素子の登場が引き金となり、従来の光源では実現できなかったパーソナルヘルスケア用の小型光センサーなど、新しい製品群の創出が期待される。

 今後、さらなる発光強度向上や安定性の向上に関する基礎研究を加速させるとともに、実用に向けたプロセス技術の開発を推し進め、より多くの目的に応える素子の開発やカスタマイズを進める。また、連携パートナーを募り、量産技術の開発や適用製品開発も行う。