東京大学など n型有機半導体を開発、最小クラスの接触抵抗

, , , ,

2020年11月26日

 東京大学、筑波大学、北里大学と産業技術総合研究所はこのほど、真空蒸着法と印刷法で良質な薄膜を再現性よく成膜でき、優れた大気安定性と電子移動度をもつn型有機半導体材料を開発したと発表した。また固いフェニル部位と柔らかいアルキル部位からなるフェニルアルキル側鎖が、分子集合体構造形成に重要であることを明らかにした。

 パイ電子系分子の有機半導体は一般に正孔が伝導しやすく、その多くが正孔輸送性(p型)で正孔移動度がアモルファスシリコンより一桁以上高い十㎠/V・s級のものもある。それに匹敵する電子移動度とプロセス適合性、大気安定性をもつ電子輸送性(n型)有機半導体の開発が求められている。

 同グループはBQQDI(ベンゾイソキノリノキノリンジイミド)骨格を開発し、フェニルエチル側鎖をもつPhC2-BQQDIが、高電子移動度・大気安定な単結晶薄膜を印刷法で成膜できることを見出だした。

 今回、側鎖アルキル部位の柔軟性に注目し、アルキル基の異なるPhCn-BQQDI(n=1~3)の集合構造と半導体特性を調べた。アルキル部位を選択することで印刷法でも真空蒸着法でも優れたデバイス性能と高い大気安定性が得られた。印刷法ではPhC2-BQQDIが最高の半導体性能を示し、電子移動度の計算予測と一致した。

 一方、真空蒸着法ではPhC3-BQQDIがより優れた電子移動度とn型有機半導体として世界最小クラスの有機半導体/金属電極の接触抵抗を示した。X線回折から集合構造はn数に依存し、良質で純粋な構造(単結晶)ほど接触抵抗が低いことが分かった。

 分子動力学計算による分子の揺らぎは、バルク単結晶中ではnが大きいほど大きく、薄膜中ではnが小さいと極端に大きい。印刷法(バルク状態)では揺らぎが小さいほど単結晶化、真空蒸着法(薄膜)では基板との相互作用を受けるため揺らぎが大きいものほど多形化すると考えられる。

 パイ電子共役骨格とフェニルアルキル側鎖との協同的挙動が、基板上での集合構造形成に重要で、今後の有機半導体材料開発の重要な分子設計指針となることが期待される。なおPhC2‐BQQDI試薬は富士フイルム和光純薬から販売中で、PhC3‐BQQDI試薬も今年度内に販売予定だ。

 

東京大など 高製造性・高性能両立の有機半導体を開発

, , , , ,

2020年9月11日

 東京大学、富山高等専門学校、筑波大学、北里大学と産業技術総合研究所(産総研)はこのほど、特異な構造相転移挙動により高溶解性・高移動度・環境ストレス耐性をもち、高製造プロセス適性かつ高性能な有機半導体を開発したと発表した。その成果は、アメリカ化学会(ACS)学会誌のオンライン速報版で公開された。

 有機半導体は低分子間力の固体であり軽量・柔軟で、印刷で製造できるため低生産コスト・低環境負荷である。性能も市販アモルファスシリコンより1桁以上高い10㎠/Vs級の移動度をもち、次世代のプリンテッド・フレキシブルエレクトロニクス材料として期待される。しかし、高性能有機半導体分子の多くは有機溶媒への溶解性が乏しく、製造プロセスが限られることが課題であった。

 同研究グループが開発したデシル置換セレン架橋V字型分子C10-DNS-VWは、製造プロセス適性と高性能を両立している。SPring-8による構造解析で、高溶解性だが低電荷輸送性の1次元集合体構造と、高電荷輸送性だが低溶解性の2次元集合体構造の2種類の集合体構造を形成し、加熱処理により1次元から2次元に、良溶媒存在下では2次元から1次元へ相転移することが分かった。

 また分子動力学計算では基板表面では2次元集合体構造は1次元構造よりも安定であり、蒸着法や塗布結晶化法などの製造プロセスによらず、薄膜作製時に2次元構造が再現性よく得られた。一般的な芳香族溶媒に対して1重量%以上溶解するため、様々な印刷プロセスに適用できる。塗布プロセスで得られた単結晶薄膜を用いたトランジスタは、世界最高レベルの11㎠/Vsの移動度、良好な電荷注入特性、高環境ストレス耐性を示した。

 今回開発のC10-DNS-VWからなる有機半導体は、蒸着法や印刷法などの各種製造プロセスへの適合性が高い。電子タグやマルチセンサーなど各種ハイエンドデバイス開発を加速し、次世代プリンテッド・フレキシブルエレクトロニクス分野の起爆材料となることが期待される。

産総研 高性能高信頼性n型有機半導体材料の開発に成功

, , , , ,

2020年5月25日

 産業技術総合研究所(産総研)は、東京大学、筑波大学、北里大学と産総研・東大先端オペランド計測技術オープンイノベーションラボラトリが、高信頼性かつ高電荷移動度、大気、熱、バイアス(動作電圧)ストレス耐性を併せ持ち実用に耐えうる塗布型n型半導体材料の開発に世界で初めて成功した。

 この材料は、新しい分子設計指針に基づく電子輸送性BQQDI(ベンゾイソキノリノキノリンジイミド)骨格を持つ塗布型n型有機半導体材料で、IoT社会のキーデバイスである電子タグやマルチセンサーの実用化を加速させることが期待される。

 現在汎用される主としてシリコン系の無機半導体は、電荷移動速度は高いが、重く、硬く、製造にも300~1000℃の高温が必要となる。一方、軽量かつ柔軟で、印刷による低温作製によりコストと環境負荷を大幅に軽減した有機系半導体が注目され、すでに無機半導体のアモルファスシリコンより1桁高い10㎠/V・s級の正孔移動度を持ち、実用に耐える環境ストレス耐性を示す印刷可能なp型半導体が報告されている。多種多様なハイエンドデバイス開発のためには、p型と同程度の安定性、プロセス性およびデバイス性能を併せ持つn型有機半導体が求められていた。

 こうした中、今回、ペリレンジイミド骨格に窒素を導入したBQQDI骨格を持つ有機分子が、大気下で安定なn型有機半導体の母骨格となることを発見。特に、フェネチル基を導入したPhC2‐BQQDIの単結晶が三㎠/V・sの電子移動度および高い信頼性因子を示すことを見出だした。大気下で6カ月以上安定にデバイスを駆動することが明らかとなり、熱ストレスやバイアスストレスに対しても極めて高いデバイス安定性が実証された。

 さらに、この優れた半導体特性が、無機半導体同様のバンド伝導機構に基づくことも実験的に証明された。分子力学計算と伝導計算からも、窒素を介した多点水素結合が分子間振動を抑制し電子移動度を向上させていることが明らかとなった。また、CMOS論理回路に応用することにも成功。

 BQQDI骨格は性能・耐性ともに前例のないn型有機半導体で、次世代エレクトロニクスの研究と産業の戦略材料になるだけにとどまらず、曲がるディスプレー、電子タグ、マルチセンサー、熱電変換素子、薄膜太陽電池などの開発への貢献が期待できる。

 なお、PhC2‐BQQDIは、来月上旬から富士フイルム和光純薬から試薬として販売される予定。