産総研 PETボトルのリサイクル、常温原料化法を開発

, , , ,

2021年11月25日

 産業技術総合研究所はこのほど、PETボトルなどに使用され廃棄されたPET樹脂を、従来よりも大幅に低い温度で分解し、原料であるテレフタル酸ジメチル(DMT)を高収率かつ高純度で回収する触媒技術を開発したと発表した。

 同技術は、炭酸ジメチルを使用した新しいアルカリ分解法によって、常温・短時間で効率よくPET樹脂の分解が進行し、原料であるDMTを90%以上の収率で得ることができる。200℃以上の高温処理が課題となる現行法から大幅に低温化できるため、PETボトルの「ボトルtoボトル」リサイクルの低コスト化が期待される。

 使用済みPET樹脂のマテリアルリサイクル(MR)は、選別後に樹脂のまま溶融・再成形する手法であるが、不純物の影響でリサイクル前の品質に戻すことが困難となる。一方、ケミカルリサイクル(CR)は、PET樹脂を一度低分子化合物へと化学的に分解することで、原理的に元のPET製品と同じ品質で製造することができる。しかし、この方法は分解処理のために高い温度が必要であり、高コストなプロセスであることが大きな課題だった。

 こうした中、産総研触媒化学融合研究センターは、資源循環型社会の推進に貢献するため、様々な未利用資源を活用するための触媒技術開発を推進。今回、プラスチックごみを効率的にリサイクルするための触媒技術開発に着手した。PET樹脂の効率的なCRとしてエステル交換反応に着目し、副生成物の捕捉により平衡反応をコントロールする独自のアイデアによって、反応温度の大幅な低温化を実現に成功した。

 今後、同リサイクル法の社会実装を目指し、触媒の改良、反応のスケールアップ、種々のPET含有製品への適応可能性を検討する。また、PET樹脂以外のプラスチック材料をリサイクルするための触媒開発についても鋭意検討を進めていく。

NEDO IoT向け新セキュリティ技術の普及を推進

, , , , , , , ,

2021年11月11日

 新エネルギー・産業技術総合開発機構(NEDO)とセキュアオープンアーキテクチャ・エッジ基盤技術研究組合(TRASIO)はこのほど、安全なIoT社会の実現に向けてセキュリティ技術の普及を図る「オープンコミュニティ powered by TRASIO」を設立した。

 IoT社会では、従来のクラウド集約型ではなくネットワーク末端で情報処理するエッジコンピューティングが必要で、膨大なデータの処理電力の劇的低減も求められる。NEDOは既存技術の延長線上にはない、高速化と低消費電力化を両立する技術確立を目指し「高効率・高速処理を可能とするAIチップ・次世代コンピューティングの技術開発」プロジェクトを進めている。

 一方、IoT機器を利用したサービス提供には、「提供サイドが想定する正規IoT機器」か「非正規IoT機器や正規IoT機器になりすました悪意のあるIoT機器」かを確実に判断し、正規の機器のみにサービスを提供する手段が必要だ。

 こうした中、日立製作所、エヌエスアイテクス、慶應義塾、産業技術総合研究所、セコムの5者はTRASIOを設立し、同プロジェクトの「革新的AIエッジコンピューティング技術」のなかの「セキュアオープンアーキテクチャ基盤技術とそのAIエッジ応用研究開発」を担当。昨年、オープンアーキテクチャ「RISC‐V(リスク・ファイブ)」を開発した。

 今回、これをベースに開発したセキュリティシステムの紹介や試使用、ハンズオン体験を図る場として、同オープンコミュニティを設立。RISC-Vセキュリティシステムの認知度を上げるとともに、あらゆるユーザーの意見を取り入れて開発成果の最大化を図る。今後、国内企業・法人などを対象にセミナーやフォーラム、活動報告会を通して新技術の解説や実応用ガイドの説明、RISC-Vの国際標準化に向けた活動を報告する。

産総研とトヨタ エネルギー・環境領域技術の共同研究検討

, , , , ,

2021年10月26日

 産業技術総合研究所、トヨタ自動車、豊田中央研究所はこのほど、エネルギー・環境領域における先端技術開発の加速と実用化に向けた共同研究の検討を開始した。

 3者はカーボンニュートラル(CN)の実現に貢献するという強い意志をもち、CO2排出量削減の鍵となるエネルギーに焦点をあて、地球にやさしくいつまでも安心して使えるエネルギーを社会で共有することを目指す。

 CNとは「作る、運ぶ、使う、リサイクルする」という製品のライフサイクル全体でのCO2排出量を実質ゼロにすることで、「どのようなエネルギーを、誰が、どこで、どのくらい、どのように使うか」が重要なポイント。国・地域によってエネルギー事情は異なり、選択肢も様々だ。

 1つのエネルギーや技術に絞るのではなく、暮らしや企業活動に応じたエネルギーと活用技術の選択肢を拡げる研究に取り組み、将来の社会実装を目指す。

 具体的には、①産総研のエネルギーモデルを使った将来のエネルギー関連技術の動向・エネルギー環境政策などの社会情勢の影響分析に基づく、クリーンエネルギーの需要見込み・新技術の導入・環境への負荷・コストなどの「エネルギーシナリオの構築」、

 ②最適なエネルギー構成と自動車の電動化技術を通じた「CNと経済合理性を両立する街のエネルギーネットワークの構築」、

 ③太陽光発電システム搭載の電動車両普及のための高変換効率・低コストの「車載用高効率太陽光発電システムの開発」、

 ④水素社会の実現に向けた「水素を「作る、運ぶ、使う」ための要素技術の開発」から共同研究の検討をしていく。

 今後、産総研・トヨタ・豊田中研がしっかりと連携し、2050年CN実現への貢献に向けて多方面から様々な技術の可能性を探る。志を同じくする新たなパートナーとの連携についてもオープンに検討し、共同研究の成果が社会で実装され普及し定着することを目指す。

産総研など 限定的・偏向的データから新材料組成を予想

, , , , , ,

2021年8月30日

 産業技術総合研究所(産総研)と北陸先端科学技術大学院大学、物質・材料研究機構、HPCシステムズ、仏コンピエーニュ工科大学の共同チームはこのほど、証拠理論を使ったデータ駆動型アプローチによる新材料推薦システムを開発し、ハイエントロピー合金(多元素組成の合金)の実験検証により、新たな単相合金薄膜材料の合成に成功した。

 材料研究の短期化とコスト削減は急務だ。データから価値を引き出すデータ駆動型材料開発手法が注目されるが、膨大な数の成分組み合わせ数に比べ、理論計算や実験評価数は少ないことが問題だ。実験条件や計算手法の違いで、一貫性がある解釈の難しい結果を含んだり報告データは成功例に偏るなど、データの限定性や偏向性のため、得られた結果の精度や信頼性の定量的評価が困難で、少ない実験数で効率的に作製条件や組成を決める上での障害となっている。

 今回採用した証拠理論は、ベイズ統計を一般化したものでデータの不確かさを評価でき、合金生成が可能な全ての組み合わせの一部または不完全なデータをもとに、組成を推定できる。複数のデータ源から未知の組成が存在する可能性を示す手がかりを集め、その証拠をモデル化・収集・結合して生成可能な新規組成を推薦する手法を開発。

 鉄・コバルト・マンガンと第四元素Rを含む新規ハイエントロピー合金について、スパッタリング法でRの組成が少しずつ異なる薄膜を作製し、組成と結晶構造の関係を系統的にデータベースとして取得。その関係性を効率的に検証することで、同手法で推奨された材料候補群から、これまで知られていなかった体心立方構造の鉄・コバルト・マンガン・ニッケル薄膜の合成に初めて成功した。

 また、試行回数を既存の機械学習による推薦方法の100分の1以下に低減できた。これにより、関連性が明確ではないデータ群から、材料組成が関係し説明可能で合理性があるデータの関連性を抽出し新たに有効なデータ群を構築することで、新材料の提案と合成を実現した。

NEDO 高効率帯水層蓄熱システム、ZEB適応性検証

, , , , , , ,

2021年7月14日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、再生可能エネルギー熱利用にかかるコスト低減技術開発事業において、日本地下水開発が、日本で初めて高効率帯水層蓄熱によるトータル熱供給システムを、ネット・ゼロ・エネルギー・ビル(ZEB)に適応させる実証施設を山形県山形市に整備したと発表した。

 実証試験とモニタリングによりデータを収集し、システムの最適化設定によってさらなるコストダウンに取り組む。これにより同システムのZEBへの適応性を向上させ、地下水熱エネルギーの有効活用による建物のエネルギー収支ゼロを目指す。

 再生可能エネの利用拡大には電力に加え、地中熱や太陽熱、雪氷熱などの熱利用も重要とされる。しかし再生可能エネルギー熱利用においては、依然として導入にかかる高いコストが課題となっている。

 こうした中、NEDOは、再生可能エネルギー熱利用システムの普及促進・市場拡大を図るため、導入や運用システムのコストダウンに関する研究開発を実施。同事業でNEDOと日本地下水開発は、秋田大学、産業技術総合研究所と共に、地下帯水層に冷熱・温熱を蓄え有効利用する国内初の高効率帯水層蓄熱システムを開発した。

 日本地下水開発の事務所で空調に導入した結果、従来のオープンループシステムと比較して初期導入コストの21%削減と年間運用コストの31%削減を達成した。その後、2019年にスタートしたNEDOの助成事業「再生可能エネルギー熱利用にかかるコスト低減技術開発」において、日本地下水開発はゼネラルヒートポンプ工業と共同で、事業の成果を発展させ開発した高効率帯水層蓄熱によるトータル熱供給システムを、ZEBに適応させる検証に着手。今年7月、国内では初となる、

 同システムのZEB適応性を検証するための実証施設を山形県山形市に新築し、検証に向けた各種データのモニタリングとデータ収集を開始した。

 

NEDO 航空機エンジン向け合金開発と材料DBの構築

, , , , , , , , , , , , ,

2021年6月10日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、航空機エンジン用国産材料の競争力強化に向け、革新的な合金開発と材料データベースの構築を行う2件の研究開発事業に着手した。

 CO2排出量削減に向け、低燃費・高性能の航空機が求められている。その中で、航空機エンジンには高い安全性や品質保証体系、航空当局の認証管理などが要求されることから、欧米企業を中心とした寡占状態にある。日本の航空機エンジン産業は国際共同開発への参画を通じて事業規模を拡大してきたが、さらなる拡大には技術革新による優位性を維持し、設計段階から開発に携わる戦略的パートナーとなることが不可欠だ。

 今回、航空機エンジン用材料開発のための「革新的合金探索手法の開発」と、国産材料の競争力強化のための「航空機エンジン用評価システム基盤整備」事業に着手。高温・高圧環境に耐え、軽量で耐熱性、耐摩耗性、熱伝導性、導電性などに優れる合金の開発には、金属元素の組み合わせとプロセス条件決定のための膨大な実験が必要で、天文学的な時間がかかる。そこで合金探索に必要な良質のデータを大量かつ高速に収集し、マテリアルズ・インフォマティクスによるデータ駆動型合金探索手法を開発し、航空機エンジンへの適用可能性を模索する。

 一方、航空機エンジンには材料段階から厳しい認証基準などがある。国産材料の競争力を高め、材料データを効率的に得るために、関連企業や研究機関などと連携してデータベースを整備し、それに基づいて実際に部材を製造し性能評価試験などを行う。

 参加企業・機関はJX金属、IHI、川崎重工業、三菱重工航空エンジン、本田技術研究所、三菱パワー、産業技術総合研究所、金属系材料研究開発センター、物質・材料研究機構、筑波大学で、プロジェックトリーダーは東京大学大学院工学系研究科の榎学教授が務める。新合金を開発し、認証取得に必要なデータベースを構築し、航空機エンジンへの適用と日本の航空機エンジン産業の国際競争力強化を目指す。新合金による軽量化とエンジン高効率化による燃費改善で、2040年に約93万tのCO2排出量削減が期待される。

日本触媒 高速で高密度な蓄熱デバイス、共同開発を推進

, , ,

2021年1月13日

 日本触媒は12日、北海道大学、産業技術総合研究所と共に、NEDOエネルギー・環境新技術先導研究プログラムについて「合金系潜熱蓄熱マイクロカプセルを基盤とした高速かつ高密度な蓄熱技術の研究開発」事業を受託したと発表した。

合金系潜熱蓄熱マイクロプセル「h-MEPCM」
合金系潜熱蓄熱マイクロプセル「h-MEPCM」

 地球温暖化防止に向けて再生可能エネルギーの活用が進みつつあるが、条件によって変動するため、蓄エネルギー技術を併用する必要がある。蓄熱は蓄電池と比べ安価であるが、熱の発生する時間や場所が必ずしも需要と一致しないため、現状では大量の余剰熱が廃棄されている。蓄熱技術を用いることで、余剰熱を再利用し大幅な省エネにつなげることが可能となる。

 今回の事業では、同大・能村准教授の開発した合金系潜熱蓄熱マイクロカプセル(h-MEPCM)を同社の触媒製造技術により成型体に加工。同大ではこの成型体を使ったプロトタイプモジュールの諸物性を評価し、産総研ではデータを基にシミュレーションモデルの構築と応用モジュールの作成を行う。これにより、蓄熱成型体のデバイスとしての性能を取得し、応用展開を促進する計画だ。

 h-MEPCMは金属の核をセラミックス(アルミナ)の殻で封じた粒子径30㎛前後の粒子で、核の金属が600℃付近で溶解することにより潜熱として熱を蓄える。高い基礎的熱特性をもつが、実用に向けては粉体を適切な形に成型することが求められていた。

 同社は蓄積したノウハウを活用して、種々のサイズのペレット、リング、ハニカムなどの形状をもつh-MEPCM成型体を作成。これにより実用モデルでの諸物性の評価が可能となるため、蓄熱密度、伝熱特性などの基礎物性の取得に加え、出力特性、繰り返し耐久性など使用形態での熱特性の測定を行い、具体的性能を示す。さらに、社会実装を促進するため、想定する用途でのシミュレーションを行い、炭酸ガス抑制効果やコスト削減効果など、既存技術に対する優位性も示していく。

 同事業の展開先として、高温産業炉の省エネ技術リジェネバーナーでの利用や電炉排熱の再利用、コジェネレーションの熱電需給調整、EVの暖房用蓄熱などの省エネ用途に加え、再生エネとの組み合わせでは24時間安定発電も可能な集光型太陽熱発電(CSP)、石炭火力の燃焼器を蓄熱体で置き換えた蓄熱発電などの再生エネ安定利用などを想定している。

 

産総研 酸化チタン接合で結晶Si太陽電池の効率向上

, ,

2020年11月30日

 産業技術総合研究所はこのほど、ドイツ・フラウンホーファー研究機構と共同で酸化チタン(TiO2)薄膜が結晶シリコン(Si)の表面欠陥を不活性化し結晶Siから正孔を選択的に取り出すことを発見。TiO2薄膜を正極側に配した結晶Si太陽電池で20%超の変換効率を実証した。

 太陽電池の9割以上を占める結晶Si型の変換効率は約20%。結晶Si内で光励起した電子と正孔を負極と正極から取り出すが、結晶表面の欠陥で電子と正孔が再結合して消滅する。表面欠陥の不活性化に使うアモルファスSi薄膜の成膜には設備投資や維持費が大きく、高効率化と低コスト化は背反する。

 今回、光関連で汎用されるTiO2に注目し、有機金属錯体と水蒸気による原子層堆積法でn型結晶Si表面に厚さ約5㎚の非晶質TiO2を製膜。さらにスズドープ酸化インジウム(ITO)透明電極と銀のグリッド電極を形成して正極とし、太陽電池を作製した。疑似太陽光を正極側から照射した際の開放電圧は、ITOのみの場合の200㎷に対し500に、TiO2成膜後に水素プラズマ処理すると670まで増加した。

 TiO2は様々な材料に対して電子選択性が高く負極に使われるが、正極としても機能した。これは欠陥不活性化能と正孔選択性が、TiO2/結晶Si界面に形成する相互混合層の組成や分布に依存するためである。このTiO2を使った太陽電池は、従来のアモルファスSi使用のヘテロ接合型結晶Si太陽電池に比べて、波長400~600㎚での高い外部量子効率と短絡電流密度の改善で、変換効率21.1%を示した。波長約400㎚以下の紫外線照射で劣化するが、非受光面に成膜した場合は劣化しなかった。p型結晶Siの非受光面に製膜した場合も劣化はなく、変換効率は20%程度。n型だけでなく汎用のp型太陽電池など様々なタイプにも応用でき、高効率・低コストの太陽電池の実現が期待される。

 今後さらなる高効率化と紫外線耐性の検討を進め、さらにTiO2/Si界面での正孔輸送メカニズムを明らかにし、無機・有機系太陽電池やSiを組み合わせたタンデム型太陽電池、光電気化学デバイス、半導体デバイスなどへの応用も検討する。

東京大学など n型有機半導体を開発、最小クラスの接触抵抗

, , , ,

2020年11月26日

 東京大学、筑波大学、北里大学と産業技術総合研究所はこのほど、真空蒸着法と印刷法で良質な薄膜を再現性よく成膜でき、優れた大気安定性と電子移動度をもつn型有機半導体材料を開発したと発表した。また固いフェニル部位と柔らかいアルキル部位からなるフェニルアルキル側鎖が、分子集合体構造形成に重要であることを明らかにした。

 パイ電子系分子の有機半導体は一般に正孔が伝導しやすく、その多くが正孔輸送性(p型)で正孔移動度がアモルファスシリコンより一桁以上高い十㎠/V・s級のものもある。それに匹敵する電子移動度とプロセス適合性、大気安定性をもつ電子輸送性(n型)有機半導体の開発が求められている。

 同グループはBQQDI(ベンゾイソキノリノキノリンジイミド)骨格を開発し、フェニルエチル側鎖をもつPhC2-BQQDIが、高電子移動度・大気安定な単結晶薄膜を印刷法で成膜できることを見出だした。

 今回、側鎖アルキル部位の柔軟性に注目し、アルキル基の異なるPhCn-BQQDI(n=1~3)の集合構造と半導体特性を調べた。アルキル部位を選択することで印刷法でも真空蒸着法でも優れたデバイス性能と高い大気安定性が得られた。印刷法ではPhC2-BQQDIが最高の半導体性能を示し、電子移動度の計算予測と一致した。

 一方、真空蒸着法ではPhC3-BQQDIがより優れた電子移動度とn型有機半導体として世界最小クラスの有機半導体/金属電極の接触抵抗を示した。X線回折から集合構造はn数に依存し、良質で純粋な構造(単結晶)ほど接触抵抗が低いことが分かった。

 分子動力学計算による分子の揺らぎは、バルク単結晶中ではnが大きいほど大きく、薄膜中ではnが小さいと極端に大きい。印刷法(バルク状態)では揺らぎが小さいほど単結晶化、真空蒸着法(薄膜)では基板との相互作用を受けるため揺らぎが大きいものほど多形化すると考えられる。

 パイ電子共役骨格とフェニルアルキル側鎖との協同的挙動が、基板上での集合構造形成に重要で、今後の有機半導体材料開発の重要な分子設計指針となることが期待される。なおPhC2‐BQQDI試薬は富士フイルム和光純薬から販売中で、PhC3‐BQQDI試薬も今年度内に販売予定だ。

 

東大ら 高再現性・生体適合性高感度ラマン分光法を開発

, , , ,

2020年10月15日

 東京大学、産業技術総合研究所、神奈川県立産業技術総合研究所はこのほど、東大合田圭介教授の研究グループが極めて高い再現性、感度、均一性、生体適合性、耐久性をもつ表面増強ラマン分光法(SERS)の基板を開発し、実用的な微量分析法を実現したと発表した。

 1970年代に発見されたSERSは、金属基板上の局在表面プラズモン共鳴(LSPR)により通常のラマン分光法よりも数桁以上高い感度で無標識の微量分析に有効であったが、感度は金属ナノ構造による強電磁場の位置(ホットスポット)に依存するため低再現性、不均一性で、金属基板の光熱と酸化による低生体適合性、低耐久性が課題であった。金属基板代替のシリコンやゲルマニウムナノ構造体、グラフェンなどの2次元材料、半導電性金属酸化物などは構造共鳴や電荷移動共鳴による最大5桁程度の感度増強が実証されたが、固有の光触媒活性や生体分子への有害性により、再現性は低かった。

 今回LSPRに依存しない、金属不含有の多孔質炭素ナノワイヤをアレイ状に配列したナノ構造体(PCNA)基板を開発。広帯域電荷移動共鳴による化学的増強により約6桁の感度増強を実現した。基板全面が活性化するため高い再現性と均一性、耐久性を示し、光熱によって損なわれていた生体適合性も大幅に改善した。これらの特性は、ローダミン6G、β‐ラクトグロブリン、グルコースなどの分子で実験的に実証した。またPCNA基板は1枚約1000円で大量生産が可能だ。

 同手法の高い実用性および信頼性により、分析化学、食品科学、薬学、病理学など多岐にわたる学術分野に加え、感染症検査、糖尿病検査、がん検診、環境安全、科学捜査などでの微量分析への展開が期待される。