NEDO 航空機エンジン向け合金開発と材料DBの構築

, , , , , , , , , , , , ,

2021年6月10日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、航空機エンジン用国産材料の競争力強化に向け、革新的な合金開発と材料データベースの構築を行う2件の研究開発事業に着手した。

 CO2排出量削減に向け、低燃費・高性能の航空機が求められている。その中で、航空機エンジンには高い安全性や品質保証体系、航空当局の認証管理などが要求されることから、欧米企業を中心とした寡占状態にある。日本の航空機エンジン産業は国際共同開発への参画を通じて事業規模を拡大してきたが、さらなる拡大には技術革新による優位性を維持し、設計段階から開発に携わる戦略的パートナーとなることが不可欠だ。

 今回、航空機エンジン用材料開発のための「革新的合金探索手法の開発」と、国産材料の競争力強化のための「航空機エンジン用評価システム基盤整備」事業に着手。高温・高圧環境に耐え、軽量で耐熱性、耐摩耗性、熱伝導性、導電性などに優れる合金の開発には、金属元素の組み合わせとプロセス条件決定のための膨大な実験が必要で、天文学的な時間がかかる。そこで合金探索に必要な良質のデータを大量かつ高速に収集し、マテリアルズ・インフォマティクスによるデータ駆動型合金探索手法を開発し、航空機エンジンへの適用可能性を模索する。

 一方、航空機エンジンには材料段階から厳しい認証基準などがある。国産材料の競争力を高め、材料データを効率的に得るために、関連企業や研究機関などと連携してデータベースを整備し、それに基づいて実際に部材を製造し性能評価試験などを行う。

 参加企業・機関はJX金属、IHI、川崎重工業、三菱重工航空エンジン、本田技術研究所、三菱パワー、産業技術総合研究所、金属系材料研究開発センター、物質・材料研究機構、筑波大学で、プロジェックトリーダーは東京大学大学院工学系研究科の榎学教授が務める。新合金を開発し、認証取得に必要なデータベースを構築し、航空機エンジンへの適用と日本の航空機エンジン産業の国際競争力強化を目指す。新合金による軽量化とエンジン高効率化による燃費改善で、2040年に約93万tのCO2排出量削減が期待される。

日本触媒 高速で高密度な蓄熱デバイス、共同開発を推進

, , ,

2021年1月13日

 日本触媒は12日、北海道大学、産業技術総合研究所と共に、NEDOエネルギー・環境新技術先導研究プログラムについて「合金系潜熱蓄熱マイクロカプセルを基盤とした高速かつ高密度な蓄熱技術の研究開発」事業を受託したと発表した。

合金系潜熱蓄熱マイクロプセル「h-MEPCM」
合金系潜熱蓄熱マイクロプセル「h-MEPCM」

 地球温暖化防止に向けて再生可能エネルギーの活用が進みつつあるが、条件によって変動するため、蓄エネルギー技術を併用する必要がある。蓄熱は蓄電池と比べ安価であるが、熱の発生する時間や場所が必ずしも需要と一致しないため、現状では大量の余剰熱が廃棄されている。蓄熱技術を用いることで、余剰熱を再利用し大幅な省エネにつなげることが可能となる。

 今回の事業では、同大・能村准教授の開発した合金系潜熱蓄熱マイクロカプセル(h-MEPCM)を同社の触媒製造技術により成型体に加工。同大ではこの成型体を使ったプロトタイプモジュールの諸物性を評価し、産総研ではデータを基にシミュレーションモデルの構築と応用モジュールの作成を行う。これにより、蓄熱成型体のデバイスとしての性能を取得し、応用展開を促進する計画だ。

 h-MEPCMは金属の核をセラミックス(アルミナ)の殻で封じた粒子径30㎛前後の粒子で、核の金属が600℃付近で溶解することにより潜熱として熱を蓄える。高い基礎的熱特性をもつが、実用に向けては粉体を適切な形に成型することが求められていた。

 同社は蓄積したノウハウを活用して、種々のサイズのペレット、リング、ハニカムなどの形状をもつh-MEPCM成型体を作成。これにより実用モデルでの諸物性の評価が可能となるため、蓄熱密度、伝熱特性などの基礎物性の取得に加え、出力特性、繰り返し耐久性など使用形態での熱特性の測定を行い、具体的性能を示す。さらに、社会実装を促進するため、想定する用途でのシミュレーションを行い、炭酸ガス抑制効果やコスト削減効果など、既存技術に対する優位性も示していく。

 同事業の展開先として、高温産業炉の省エネ技術リジェネバーナーでの利用や電炉排熱の再利用、コジェネレーションの熱電需給調整、EVの暖房用蓄熱などの省エネ用途に加え、再生エネとの組み合わせでは24時間安定発電も可能な集光型太陽熱発電(CSP)、石炭火力の燃焼器を蓄熱体で置き換えた蓄熱発電などの再生エネ安定利用などを想定している。

 

産総研 酸化チタン接合で結晶Si太陽電池の効率向上

, ,

2020年11月30日

 産業技術総合研究所はこのほど、ドイツ・フラウンホーファー研究機構と共同で酸化チタン(TiO2)薄膜が結晶シリコン(Si)の表面欠陥を不活性化し結晶Siから正孔を選択的に取り出すことを発見。TiO2薄膜を正極側に配した結晶Si太陽電池で20%超の変換効率を実証した。

 太陽電池の9割以上を占める結晶Si型の変換効率は約20%。結晶Si内で光励起した電子と正孔を負極と正極から取り出すが、結晶表面の欠陥で電子と正孔が再結合して消滅する。表面欠陥の不活性化に使うアモルファスSi薄膜の成膜には設備投資や維持費が大きく、高効率化と低コスト化は背反する。

 今回、光関連で汎用されるTiO2に注目し、有機金属錯体と水蒸気による原子層堆積法でn型結晶Si表面に厚さ約5㎚の非晶質TiO2を製膜。さらにスズドープ酸化インジウム(ITO)透明電極と銀のグリッド電極を形成して正極とし、太陽電池を作製した。疑似太陽光を正極側から照射した際の開放電圧は、ITOのみの場合の200㎷に対し500に、TiO2成膜後に水素プラズマ処理すると670まで増加した。

 TiO2は様々な材料に対して電子選択性が高く負極に使われるが、正極としても機能した。これは欠陥不活性化能と正孔選択性が、TiO2/結晶Si界面に形成する相互混合層の組成や分布に依存するためである。このTiO2を使った太陽電池は、従来のアモルファスSi使用のヘテロ接合型結晶Si太陽電池に比べて、波長400~600㎚での高い外部量子効率と短絡電流密度の改善で、変換効率21.1%を示した。波長約400㎚以下の紫外線照射で劣化するが、非受光面に成膜した場合は劣化しなかった。p型結晶Siの非受光面に製膜した場合も劣化はなく、変換効率は20%程度。n型だけでなく汎用のp型太陽電池など様々なタイプにも応用でき、高効率・低コストの太陽電池の実現が期待される。

 今後さらなる高効率化と紫外線耐性の検討を進め、さらにTiO2/Si界面での正孔輸送メカニズムを明らかにし、無機・有機系太陽電池やSiを組み合わせたタンデム型太陽電池、光電気化学デバイス、半導体デバイスなどへの応用も検討する。

東京大学など n型有機半導体を開発、最小クラスの接触抵抗

, , , ,

2020年11月26日

 東京大学、筑波大学、北里大学と産業技術総合研究所はこのほど、真空蒸着法と印刷法で良質な薄膜を再現性よく成膜でき、優れた大気安定性と電子移動度をもつn型有機半導体材料を開発したと発表した。また固いフェニル部位と柔らかいアルキル部位からなるフェニルアルキル側鎖が、分子集合体構造形成に重要であることを明らかにした。

 パイ電子系分子の有機半導体は一般に正孔が伝導しやすく、その多くが正孔輸送性(p型)で正孔移動度がアモルファスシリコンより一桁以上高い十㎠/V・s級のものもある。それに匹敵する電子移動度とプロセス適合性、大気安定性をもつ電子輸送性(n型)有機半導体の開発が求められている。

 同グループはBQQDI(ベンゾイソキノリノキノリンジイミド)骨格を開発し、フェニルエチル側鎖をもつPhC2-BQQDIが、高電子移動度・大気安定な単結晶薄膜を印刷法で成膜できることを見出だした。

 今回、側鎖アルキル部位の柔軟性に注目し、アルキル基の異なるPhCn-BQQDI(n=1~3)の集合構造と半導体特性を調べた。アルキル部位を選択することで印刷法でも真空蒸着法でも優れたデバイス性能と高い大気安定性が得られた。印刷法ではPhC2-BQQDIが最高の半導体性能を示し、電子移動度の計算予測と一致した。

 一方、真空蒸着法ではPhC3-BQQDIがより優れた電子移動度とn型有機半導体として世界最小クラスの有機半導体/金属電極の接触抵抗を示した。X線回折から集合構造はn数に依存し、良質で純粋な構造(単結晶)ほど接触抵抗が低いことが分かった。

 分子動力学計算による分子の揺らぎは、バルク単結晶中ではnが大きいほど大きく、薄膜中ではnが小さいと極端に大きい。印刷法(バルク状態)では揺らぎが小さいほど単結晶化、真空蒸着法(薄膜)では基板との相互作用を受けるため揺らぎが大きいものほど多形化すると考えられる。

 パイ電子共役骨格とフェニルアルキル側鎖との協同的挙動が、基板上での集合構造形成に重要で、今後の有機半導体材料開発の重要な分子設計指針となることが期待される。なおPhC2‐BQQDI試薬は富士フイルム和光純薬から販売中で、PhC3‐BQQDI試薬も今年度内に販売予定だ。

 

東大ら 高再現性・生体適合性高感度ラマン分光法を開発

, , , ,

2020年10月15日

 東京大学、産業技術総合研究所、神奈川県立産業技術総合研究所はこのほど、東大合田圭介教授の研究グループが極めて高い再現性、感度、均一性、生体適合性、耐久性をもつ表面増強ラマン分光法(SERS)の基板を開発し、実用的な微量分析法を実現したと発表した。

 1970年代に発見されたSERSは、金属基板上の局在表面プラズモン共鳴(LSPR)により通常のラマン分光法よりも数桁以上高い感度で無標識の微量分析に有効であったが、感度は金属ナノ構造による強電磁場の位置(ホットスポット)に依存するため低再現性、不均一性で、金属基板の光熱と酸化による低生体適合性、低耐久性が課題であった。金属基板代替のシリコンやゲルマニウムナノ構造体、グラフェンなどの2次元材料、半導電性金属酸化物などは構造共鳴や電荷移動共鳴による最大5桁程度の感度増強が実証されたが、固有の光触媒活性や生体分子への有害性により、再現性は低かった。

 今回LSPRに依存しない、金属不含有の多孔質炭素ナノワイヤをアレイ状に配列したナノ構造体(PCNA)基板を開発。広帯域電荷移動共鳴による化学的増強により約6桁の感度増強を実現した。基板全面が活性化するため高い再現性と均一性、耐久性を示し、光熱によって損なわれていた生体適合性も大幅に改善した。これらの特性は、ローダミン6G、β‐ラクトグロブリン、グルコースなどの分子で実験的に実証した。またPCNA基板は1枚約1000円で大量生産が可能だ。

 同手法の高い実用性および信頼性により、分析化学、食品科学、薬学、病理学など多岐にわたる学術分野に加え、感染症検査、糖尿病検査、がん検診、環境安全、科学捜査などでの微量分析への展開が期待される。

 

 

東工大ら 強誘電体の薄膜化で不揮発性メモリの応用期待

, , ,

2020年10月13日

 東京工業大学と産業技術総合研究所、東北大学はこのほど、最高の強誘電性をもつ窒化アルミニウムスカンジウム=(Al,Sc)N=について、Sc濃度を下げると強誘電性が増加しかつ10㎚の薄膜でも強誘電性を保持することを世界で初めて確認したと発表した。低消費電力で動作する不揮発性メモリへの応用が期待される。

 強誘電体は、電圧の印加方向に従って安定な結晶状態(分極状態)を取り、電源切断後もその分極状態を保持する物質。無電力で分極状態を保持するため、不揮発性メモリ(無電源の記憶保持素子)を作製できる。酸化ハフニウム系などの強誘電体が交通系ICカードなどに広く実用化されているが、複雑形状の基板への3次元膜の作製が難しく、一部の用途に限られてきた。

 現在スマートフォンの高周波フィルターに使われている(Al,Sc)Nは、膜厚150㎚で高い強誘電性を示すが、メモリ動作の低消費電力化のために薄膜化した場合、「サイズ効果」による強誘電性の喪失が懸念されていた。

 (Al,Sc)Nは気相のScとAl金属を窒素ガスと反応させて作るが、今回ScとAlの比率を変えて試料を作製。その結果、Sc濃度が低いほど残留分極値(電源切断後に残る静電容量)が大きく、抗電界(分極状態の反転に必要な電圧)と最大電界(印加できる電圧)の差が広がり、分極状態を安定して繰り返し反転できることも分かった。薄膜化についても、膜厚48㎚まで残留分極値は変わらず、9㎚でも強誘電性を示すことを非線形誘電率顕微鏡法で確認した。

 (Al,Sc)Nは最大級の強誘電性を持ち、使用温度は最も高く、作製も容易。動作電力は最小で、データ保存にも電力消費しない不揮発性メモリである。さらに3次元形状への成形が不要で電極で挟むだけの単純構造のメモリができ、コスト削減につながる。今後、広い用途のメモリへの応用が期待できる。さらに(Al,Sc)Nの圧電性に分極方向の制御も加わり、従来にない新規応用も期待できる。

 

NEDO 人工光合成、収率ほぼ100%の光触媒開発

, , , , , , , ,

2020年6月12日

 新エネルギー・産業技術総合開発機構(NEDO)と、三菱ケミカルや三井化学などが参画する人工光合成化学プロセス技術研究組合(ARPChem)はこのほど、紫外光領域ながら世界で初めて100%に近い量子収率(光子の利用効率)で水を水素と酸素に分解する粉末状の半導体光触媒を開発した。信州大学、山口大学、東京大学、産業技術総合研究所(産総研)との共同研究によるもの。これまでの光触媒では量子収率が50%に達するものはほとんどなく、画期的な成果といえる。

 ソーラー水素の実用化に向けた大幅なコスト削減には、太陽光エネルギーの変換効率向上が必要だ。そこには、利用光の波長範囲を広げることと、各波長での量子収率を高めることの2つの要素がある。前者は光触媒のバンドギャップ(電子励起に必要なエネルギー)の幅がカギになり、後者は触媒調製法や助触媒との組み合わせで決まる。今回は後者に注力し、ほぼ100%の量子収率を達成するとともに、触媒の構造・機能・調製方法などを明らかにした。

 代表的な酸化物光触媒SrTiO3(Alドープ)を、フラックス法により2種の結晶面を持つ粒子にすると、光で励起された電子と正孔が各結晶面に選択的に移動する異方的電荷移動という現象が起こる。この特性を利用して、各結晶面に水素生成助触媒(Rh/Cr2O3)と酸素生成助触媒(CoOOH)を光電着法により選択的に担持した。

 その結果、光励起した電子と正孔は再結合せずに各助触媒に選択的に移動するため、吸収光のほぼ全てを水分解反応に利用することに成功した。光励起された電子と正孔の一方通行移動は植物の光合成で行われているが、複雑なタンパク質構造によるため、人工的な再現は非現実的だった。今回の光触媒の構造は簡易であり、高活性光触媒の設計指針となる。

 今回は紫外光しか吸収しないため、降り注ぐ太陽光エネルギーの一部しか利用できない。可視光を吸収するバンドギャップの小さな光触媒に応用することで、太陽エネルギーの利用度は上がる。バンドギャップの小さな化合物での水分解にはさらに高度な触媒性能が求められるが、今回の触媒設計指針を応用することにより、製造プラントの省スペース化や製造コストの低減が期待される。

 NEDOらは、引き続き光エネルギー変換効率の向上を進め、人工光合成技術の早期実現を目指していく考えだ。

東京大学 パターニングの電極を半導体に移し取る手法開発

,

2020年3月26日

 東京大学大学院新領域創成科学研究科、同マテリアルイノベーション研究センター、産業技術総合研究所 産総研・東大先端オペランド計測技術オープンイノベーションラボラトリ、物質・材料研究機構 国際ナノアーキテクトニクス研究拠点(WPI‐MANA)の共同研究グループはこのほど、洗濯のりにヒントを得て、高精細にパターニングされた電極を有機半導体に取り付ける手法を開発した。

 さまざまな機能性を持つ電子素子を駆動させるためには、電圧や電流を入出力するための電極が必要不可欠。電極は通常金属で、高真空下で大きなエネルギーを用いて成膜されることが多く、電極の設置面へのダメージを抑え、接着力など下地との相性を最適化することも重要な課題だった。

 こうした中、同研究グループは、洗濯のりの成分であるポリビニルアルコールが乾燥すると固まり、水にあうと簡単に溶けることを利用し、基板上で高精細にパターニングされた電極をポリビニルアルコールなどとともに電極フィルムとして引き剥がし、半導体上に移し取る手法を開発。

 さらに、たった一分子層(厚さ四㎚)からなる有機半導体に金属電極を取り付け、半導体の機能を十分利用できることを実証した。取り付け先の制約は極めて少なく、曲面や生体などへの応用も期待できる。

 今回の成果により、さまざまな積層デバイスへの応用が可能となり、将来の産業応用に際し低コスト・フレキシブルエレクトロニクス用のプロセスとしての利用が見込まれる。

 なお、今回の研究成果は、英国科学雑誌「Scientific Reports」(3月13日版)に掲載された。また、同研究は、日本学術振興会(JSPS)科学研究費補助金「単結晶有機半導体中電子伝導の巨大応力歪効果とフレキシブルメカノエレクトロニクス」「有機単結晶半導体を用いたスピントランジスタの実現」の一環として行われた。

 

東京農工大学など 加工性に優れた木材つくる桑の仕組みを解明

, , , , , , ,

2020年3月11日

 東京農工大学をはじめとする国内外の機関から成る研究グループはこのほど、大正時代に奥尻島で発見された桑の野生種である赤材桑(せきざいそう)が、鮮やかな赤い色の木材をつくる仕組みを解明した。

 この木材は色が赤いだけでなく、通常の樹木がつくる木材よりも成分の分離が容易で、化学パルプや燃料、化成品の製造に適している。今回の成果により、桑の木材に新しい利用の道が開かれるとともに、他の樹種への応用も期待される。

 研究を行ったのは、東京農工大大学院農学研究院生物システム科学部門の梶田真也教授のほか、農業・食品産業技術総合研究機構、産業技術総合研究所、森林研究・整備機構、米・ウィスコンシン大学、ベルギー・ゲント大学。

 最初に赤材桑と普通の桑の木材の分解産物を調査した結果、赤材桑からはインデン骨格を持った特殊な化合物が検出された。この化合物は、桑の木材に20%程度含まれる芳香族高分子リグニンに由来する。

 そこで、赤材桑からリグニンを単離して分子構造を調べたところ、赤材桑のリグニンには、インデンの元になる多量のケイ皮アルデヒド類が取り込まれていた。

 次に、研究グループはリグニンの合成に関与する、シンナミルアルコールデヒドロゲナーゼ(CAD)遺伝子の全塩基配列を決定したところ、通常品種では正常なCAD遺伝子が、赤材桑では一塩基の挿入によって完全に壊れていた。

 通常品種では、CADの働きによりケイ皮アルコール類が合成され、これが重合することでリグニンが生成する。しかし、赤材桑ではCAD遺伝子が破壊されているため、十分な量のケイ皮アルコール類が合成できず、その代替としてケイ皮アルデヒド類が重合することにより、リグニンの構造が変化することが判明した。

 ケイ皮アルデヒド類のリグニンへの取り込みは、塩基性条件下でのリグニンの分解性を高め、その後の酵素処理による木材からの単糖の回収率(糖化率)向上に寄与することが期待される。実際にアルカリ溶液で前処理した木粉をセルラーゼで加水分解したところ、期待通り赤材桑の木材では糖化率が格段に向上した。

 現在、化石資源の一部を代替するため、木材から燃料や化成品を製造する技術の開発が世界中で進められているものの、木材からの効率的なリグニンの除去が大きな技術課題となっている。リグニンが取り除きやすい木材を蓄積する赤材桑をさらに詳しく調べることは、桑だけでなく、他の樹種の木材の用途拡大にも貢献すると考えられる。

NEDOなど 小型中性子解析装置開発、非破壊で分析

, , , , ,

2020年2月25日

 NEDOは新構造材料技術研究組合(ISMA)の組合員の産業技術総合研究所と、輸送機器の構造材料・部品などの非破壊分析向けに小型中性子解析装置を開発した。

 同装置は解析用の放射線として透過力の高い中性子線を使うことで、従来のX線では透過できなかった、センチメートル厚の金属部品などの内部の結晶情報を、非破壊で分析することを可能にした。

 自動車などに代表される輸送機器の軽量化は、省エネ化の促進やCO2排出量の削減に直結する、重要な技術開発の1つと位置づけられている。最近は様々な軽量部材で輸送機器を構成(マルチマテリアル化)することで、総合的な軽量化が図られている。

 その場合、材料の物性がそれぞれ異なるため、組み合わせ部材の健全性が重要になるが、その評価には非破壊検査を通じて、結晶のひずみなどの変化を分析できることが必要だ。

 そこで、NEDOはX線よりも透過力が高い中性子線に着目。これを用いたマルチマテリアル部材などの解析手法の確立に取り組み、世界で初めてブラッグエッジイメージング法に特化した小型装置を協力機関と短期間で開発し、最初の中性子の発生と結晶情報を含む透過スペクトルの計測に成功した。

 ブラッグエッジイメージング法とは二次元検出器を利用して、画素ごとに試料を透過した中性子強度の波長分布(ブラッグエッジスペクトル)を測定し、結晶情報の抽出と画像化を行う測定法のこと。これにより、金属などで構成する部品や材料内部の広い面積(現状10㎝角)の結晶相・ひずみなどの結晶構造情報を、二次元画像として非破壊で観測できるようになった。

 小型のため使用時は専有となり、自由な条件設定が可能なほか、小規模体制での運営により、産業ユーザーからの装置利用時間などに関する要望にも柔軟に対応できる。また、自動車部品を想定して、様々な試料サイズに適応できる試料室も設けた。これらにより、健全性の高い構造材料・部品の開発と輸送機器の軽量化の促進につなげることができる。

 今後は中性子線の安定化や検出器の高感度化など、装置の性能向上を進め、2020年度の本格稼働を目指す。