産総研など 低遅延・低消費電力な光AI基本技術を確立

, , ,

2022年7月26日

 産業技術総合研究所と日本電信電話は共同で、シリコン光集積回路を使った超低遅延かつ低消費電力のニューラルネットワーク演算技術を世界で初めて実証した。

 高度なデジタル化社会では全ての情報機器へのAI処理が必要とされ、その規模は

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

産総研など 高温・空気中で実用レベルの熱電変換材料

, , ,

2022年7月25日

 北海道大学電子科学研究所と産業技術総合研究所の研究グループはこのほど、空気中・600℃で安定性能を示す実用的な熱電変換材料を発見した。

 熱電変換は工場や

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

ダイセル 銀ナノ粒子インクで曲げられる透明ヒーター

, , , ,

2022年4月11日

 ダイセルはこのほど、プラスチックシート内部に熱線を埋め込んだ「曲げられる透明ヒーター」を開発した。

曲げられる透明ヒーター

 銀ナノ粒子インクを厚み100㎛以上の高アスペクト比の銀熱線(配線)にする技術を用い、河村産業の協力の下で作成。銀熱線はフィルム内部に封止され、通電1分で表面温度が約60℃まで上昇・安定し、電気を切ると1分で表面温度が40℃以下まで低下する応答性の高さだ。

 表面に付着させたインフルエンザウイルスは、

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

東ソーなど 複合プラのCR技術、NEDOの委託事業に

, , , , , , , , , ,

2022年3月1日

 東ソー、東北大学、産業技術総合研究所、凸版印刷、東西化学産業、恵和興業は28日、共同で複合プラスチックのケミカルリサイクル(CR)技術の実用化を目指した研究開発「複合プラスチックからのモノマー回収液相プロセスの開発」を昨年11月から開始したと発表した。なお同研究開発は、新エネルギー・産業技術総合開発機構(NEDO)の「革新的プラスチック資源循環プロセス技術開発/石油化学原料化プロセス開発」委託事業の追加公募で採択されている。

 医薬品や食品など一般に使用されているプラスチックの多くは、多層プラフィルムに

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

東京工業大学など、全固体電池の性能を加熱処理で大幅に向上

, , , , ,

2022年2月24日

 東京工業大学の一杉教授はこのほど、東京大学、産業技術総合研究所、山形大学と共同で全固体電池の固体電解質と電極の界面抵抗が水蒸気により増加し、電池性能が低下することを発見。加熱処理だけで性能を大幅に向上させる技術を開発した。

 高速充電と高い安全性が期待される全固体電池は、電極材料が大気中で変質して界面抵抗が増大し、充電時間が長くなる問題がある。一杉教授らは、

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

大陽日酸など 工業炉での燃料アンモニアの燃焼技術開発

, , , , , ,

2022年2月7日

 大陽日酸はこのほど、新エネルギー・産業技術総合開発機構(NEDO)の「燃料アンモニア利用・生産技術開発/工業炉における燃料アンモニアの燃焼技術開発」事業の委託先に採択された。AGC、産業技術総合研究所、東北大学とともに、2021~2025年度までの5年間で工業炉向けのアンモニア燃焼技術を開発する。

 同社は、2014年から戦略的イノベーション創造プログラムのエネルギーキャリア「アンモニア直接燃焼」の「アンモニア燃焼炉の技術開発」に参画し、アンモニアを工業炉用燃料として使用する場合の技術的課題の解決に取り組んできた。10㎾のモデル燃焼炉で、空気中の酸素濃度を高める酸素富化燃焼とアンモニア・都市ガス混合燃料を組み合せ、火炎の輻射伝熱の能力強化とNOx生成の抑制技術を確立し、加熱炉の環境規制値を達成した。

 今回、AGC横浜テクニカルセンターの建築用ガラス製造設備にアンモニア・酸素燃焼バーナーを導入し、アンモニア燃焼技術の実証試験を行う。ガラスや溶解炉材料への影響を評価するとともに、環境基準を満たすバーナーを開発し、ガラス溶解炉への本格導入を目指す。また将来は、鉄鋼やアルミなど他素材製造工程への展開も検討していく。

産総研 超薄板窒化ケイ素基板の高絶縁耐圧を実証

, ,

2022年1月17日

 産業技術総合研究所はこのほど、厚さ32㎛の超薄板窒化ケイ素セラミックス絶縁放熱基板を試作し、絶縁耐圧が次世代電気自動車(EV)に使用可能な水準にあることを実証した。

 電力の変換と制御を高効率で行うパワーモジュールの高出力化・小型化には、

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

産総研 PETボトルのリサイクル、常温原料化法を開発

, , , ,

2021年11月25日

 産業技術総合研究所はこのほど、PETボトルなどに使用され廃棄されたPET樹脂を、従来よりも大幅に低い温度で分解し、原料であるテレフタル酸ジメチル(DMT)を高収率かつ高純度で回収する触媒技術を開発したと発表した。

 同技術は、炭酸ジメチルを使用した新しいアルカリ分解法によって、常温・短時間で効率よくPET樹脂の分解が進行し、原料であるDMTを90%以上の収率で得ることができる。200℃以上の高温処理が課題となる現行法から大幅に低温化できるため、PETボトルの「ボトルtoボトル」リサイクルの低コスト化が期待される。

 使用済みPET樹脂のマテリアルリサイクル(MR)は、選別後に樹脂のまま溶融・再成形する手法であるが、不純物の影響でリサイクル前の品質に戻すことが困難となる。一方、ケミカルリサイクル(CR)は、PET樹脂を一度低分子化合物へと化学的に分解することで、原理的に元のPET製品と同じ品質で製造することができる。しかし、この方法は分解処理のために高い温度が必要であり、高コストなプロセスであることが大きな課題だった。

 こうした中、産総研触媒化学融合研究センターは、資源循環型社会の推進に貢献するため、様々な未利用資源を活用するための触媒技術開発を推進。今回、プラスチックごみを効率的にリサイクルするための触媒技術開発に着手した。PET樹脂の効率的なCRとしてエステル交換反応に着目し、副生成物の捕捉により平衡反応をコントロールする独自のアイデアによって、反応温度の大幅な低温化を実現に成功した。

 今後、同リサイクル法の社会実装を目指し、触媒の改良、反応のスケールアップ、種々のPET含有製品への適応可能性を検討する。また、PET樹脂以外のプラスチック材料をリサイクルするための触媒開発についても鋭意検討を進めていく。

NEDO IoT向け新セキュリティ技術の普及を推進

, , , , , , , ,

2021年11月11日

 新エネルギー・産業技術総合開発機構(NEDO)とセキュアオープンアーキテクチャ・エッジ基盤技術研究組合(TRASIO)はこのほど、安全なIoT社会の実現に向けてセキュリティ技術の普及を図る「オープンコミュニティ powered by TRASIO」を設立した。

 IoT社会では、従来のクラウド集約型ではなくネットワーク末端で情報処理するエッジコンピューティングが必要で、膨大なデータの処理電力の劇的低減も求められる。NEDOは既存技術の延長線上にはない、高速化と低消費電力化を両立する技術確立を目指し「高効率・高速処理を可能とするAIチップ・次世代コンピューティングの技術開発」プロジェクトを進めている。

 一方、IoT機器を利用したサービス提供には、「提供サイドが想定する正規IoT機器」か「非正規IoT機器や正規IoT機器になりすました悪意のあるIoT機器」かを確実に判断し、正規の機器のみにサービスを提供する手段が必要だ。

 こうした中、日立製作所、エヌエスアイテクス、慶應義塾、産業技術総合研究所、セコムの5者はTRASIOを設立し、同プロジェクトの「革新的AIエッジコンピューティング技術」のなかの「セキュアオープンアーキテクチャ基盤技術とそのAIエッジ応用研究開発」を担当。昨年、オープンアーキテクチャ「RISC‐V(リスク・ファイブ)」を開発した。

 今回、これをベースに開発したセキュリティシステムの紹介や試使用、ハンズオン体験を図る場として、同オープンコミュニティを設立。RISC-Vセキュリティシステムの認知度を上げるとともに、あらゆるユーザーの意見を取り入れて開発成果の最大化を図る。今後、国内企業・法人などを対象にセミナーやフォーラム、活動報告会を通して新技術の解説や実応用ガイドの説明、RISC-Vの国際標準化に向けた活動を報告する。

産総研とトヨタ エネルギー・環境領域技術の共同研究検討

, , , , ,

2021年10月26日

 産業技術総合研究所、トヨタ自動車、豊田中央研究所はこのほど、エネルギー・環境領域における先端技術開発の加速と実用化に向けた共同研究の検討を開始した。

 3者はカーボンニュートラル(CN)の実現に貢献するという強い意志をもち、CO2排出量削減の鍵となるエネルギーに焦点をあて、地球にやさしくいつまでも安心して使えるエネルギーを社会で共有することを目指す。

 CNとは「作る、運ぶ、使う、リサイクルする」という製品のライフサイクル全体でのCO2排出量を実質ゼロにすることで、「どのようなエネルギーを、誰が、どこで、どのくらい、どのように使うか」が重要なポイント。国・地域によってエネルギー事情は異なり、選択肢も様々だ。

 1つのエネルギーや技術に絞るのではなく、暮らしや企業活動に応じたエネルギーと活用技術の選択肢を拡げる研究に取り組み、将来の社会実装を目指す。

 具体的には、①産総研のエネルギーモデルを使った将来のエネルギー関連技術の動向・エネルギー環境政策などの社会情勢の影響分析に基づく、クリーンエネルギーの需要見込み・新技術の導入・環境への負荷・コストなどの「エネルギーシナリオの構築」、

 ②最適なエネルギー構成と自動車の電動化技術を通じた「CNと経済合理性を両立する街のエネルギーネットワークの構築」、

 ③太陽光発電システム搭載の電動車両普及のための高変換効率・低コストの「車載用高効率太陽光発電システムの開発」、

 ④水素社会の実現に向けた「水素を「作る、運ぶ、使う」ための要素技術の開発」から共同研究の検討をしていく。

 今後、産総研・トヨタ・豊田中研がしっかりと連携し、2050年CN実現への貢献に向けて多方面から様々な技術の可能性を探る。志を同じくする新たなパートナーとの連携についてもオープンに検討し、共同研究の成果が社会で実装され普及し定着することを目指す。