NEDOと兼松 EV専用ナビアプリ、世界で初めて提供

, , , ,

2020年10月8日

 新エネルギー・産業技術総合開発機構(NEDO)と兼松はこのほど、EV専用のスマートフォン向けナビゲーションアプリ「EV Co‐Driver」の本格提供を開始した。

EV専用ナビアプリ「EV Co-Driver」
EV専用ナビアプリ「EV Co-Driver」

 EVが世界的に普及する中、米カリフォルニア州ではZEV規制や、優遇措置が充実しており、米国内では自家用EVの販売台数が最も多い。一方、充電インフラは都市部を中心とした整備に留まるため、EVの利用は近距離の移動に限定されている。

 こうした中、NEDOと日産自動車、兼松の3者は2015年から同州で、急速充電網の整備とリアルタイム情報サービスの提供を通じて、EVの利用頻度向上と行動範囲拡大を目指す実証事業に取り組んでいる。ソフト面では2016年からEVドライバー向けに提供しているスマートフォン用リアルタイム情報アプリ「DRIVEtheARC」を導入し、今回NEODと兼松は、さらにEV専用のスマートフォン向けナビゲーションアプリの本格提供を開始した。

 同アプリでは、目的地とバッテリー残量を入力するだけで、運転ルート・時間だけでなく充電ステーションでの待ち時間・充電時間も踏まえた最短ルートを瞬時に表示。また、出発後も経路変更やステーションの混雑状況に応じて電欠を避けた最短ルートをリアルタイムで再検索し、ターンバイターン(逐次表示)でナビゲーションする機能も備えている。これらの機能により、EVドライバーの電欠に対する心理的不安を軽減する。

 このようなEVドライバーに特化した包括的な機能を備えるナビゲーションアプリは世界初であり、これによりEVの行動範囲拡大やさらなるEV普及の促進につなげていく。

 

NEDO 航空機の燃費改善に向け複合材6件の研究開発

, , ,

2020年10月7日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、航空機の燃費改善や日本の航空機産業の国際競争力強化を目指し、新たに6件の複合材料の研究開発事業に着手した。

 同事業では、複合材料などの関連技術開発を中心として、航空機に必要な信頼性・コストなどの課題を解決するための要素技術を開発する。これにより、航空機の燃費改善によるエネルギー消費量の削減と2040年に1500万tのCO2排出量の削減、航空機産業の国際競争力の強化を目指す。

 航空機産業では、CO2排出量の削減のため、航空機の軽量化やエンジンの燃焼効率向上による燃費の改善が期待されている。また、国際的な産業競争が激化しており、燃費改善用の部材や加工技術開発などが急がれている。

 近年、航空機の構造部材には、従来の金属部材に代わり軽量化を目的として炭素繊維強化プラスチック(CFRP)が積極的に導入されてきたが、今後航空機需要の70%を占めると予想される細胴機では金属材料が主流であり、細胴機へのCFRPの適用に向けて、よりコストが低く生産性の高い成形組立技術の開発が必要になる。

 また、航空機エンジンの燃焼効率向上に向けて、金属材料(ニッケル合金)より3分の1程度軽量で耐熱性に優れたセラミックス基複合材料(CMC)の活用が注目され、中でも、耐熱温度の高い炭化ケイ素(SiC)を使ったCMCの1400℃級航空機エンジン部材への早期実用化が期待されている。

 こうした背景から、NEDOは、航空機の燃費改善、環境適合性向上、整備性向上、安全性向上のため、航空機への適用を想定したCFRPやCMCといった複合材料について、新たに6件の研究開発事業に着手。同事業では、複合材料などの関連技術開発を中心として、航空機に必要な信頼性やコストなどの課題を解決するための要素技術を開発する。

 同事業では、プロジェクトリーダーに東北大学大学院航空宇宙工学専攻の岡部朋永教授を指名し、実施予定先と連携し、成果の最大化を図る。

航空機向け新たな複合材料開発
航空機向け新たな複合材料開発

 

 

NEDOなど 温泉水でも熱交換が可能な熱交換器を開発

, , , , , ,

2020年10月6日

 新エネルギー・産業技術総合開発機構(NEDO)、東北大学、馬渕工業所、小浜温泉エネルギーはこのほど、温泉スケールと呼ばれる固形物が析出しやすい温泉水でも安定した熱交換が可能な熱交換器を開発し、1カ月間の温泉熱回収の実証試験に成功した。

 今回開発した熱交換器は、熱交換器に付着した温泉スケールを自動的に取り除くことで、熱交換の効率を維持することが可能。これにより温泉水の熱交換器のメンテナンスコストの低減が見込める。また、温泉水以外にも、汚泥を含む工場温排水や藻類・貝類を含む海水・河川水など、様々な分野の熱交換に応用でき、未利用熱や再生可能エネルギーの利用促進が期待される。

 一般的に温泉水はカルシウムや硫黄などの溶解成分を含み、熱交換器の伝熱面上に温泉スケールが析出し、熱交換を阻害することがある。そのため、頻繁な清掃が必要で、メンテナンスコストが高いことが課題だった。

 こうした中、NEDOなど4者は「NEDO先導研究プログラム/エネルギー・環境新技術先導研究プログラム」に基づき、伝熱面を回転させ、そこに羽根を押し当てることで伝熱面に析出した温泉スケールを剥ぎ取れるようにした熱交換器を開発。これにより、表面を常時温泉スケールが付着していない状態に保つことを可能にし、熱交換の効率を維持することができる。また、小浜温泉(長崎県雲仙市)で1カ月間の熱交換実験を行った結果、伝熱面からの温泉スケールの除去と熱交換効率の低下抑制に成功した。

 今後、スケールアップした熱交換器を開発し、長期間(3カ月を予定)の現地実証試験を行うことで、さらなる耐久性向上のための検証を行うほか、熱交換器の高性能化のための研究開発を行う。

実証試験の様子
実証試験の様子

 

ちとせ バイオジェット燃料の技術開発がNEDO事業に

, , ,

2020年10月6日

 ちとせグループの中核企業であるちとせ研究所は5日、新エネルギー・産業技術総合開発機構(NEDO)が公募したバイオジェット燃料生産関連の技術開発事業に、「微細藻類由来の純バイオジェット燃料の製造に向けた藻類の長期大規模培養技術の確立」を目指すテーマが採択されたと発表した。

 ちとせ研究所は、マレーシア・サラワク州の州立研究機関であるサラワク生物多様性センターや、サラワク州政府系の電力会社サラワク・エナジーらと共同で研究開発に取り組み、火力発電所の排気ガスを利用した藻類の長期大規模培養技術の確立を目指す。

 光合成により二酸化炭素を吸収する微細藻類由来バイオジェット燃料の普及に向けては、十分な供給量の確保と生産コスト削減の観点から、数千㏊規模での藻類の大量培養が必要になる。今回の実証事業では、事業化を目指す上で最小単位となる5㏊規模での実証を行っていく。

 日本と東南アジア全11社で活動するバイオベンチャー企業群のちとせグループは、これまで国内外の様々な環境下で、様々な藻類種、様々な藻類培養技術を応用し、多くの共同事業者と共に、複数の屋外実証プロジェクトを実施、その一部を商業化している。

 これらの知見を生かし今回、5㏊の新規大規模藻類培養設備を構築し、熱帯気候の屋外環境下での純バイオジェット燃料製造に最適な微細藻類を選定することで、同微細藻類種を含む複数の微細藻類種を使って火力発電所排気ガスを利用した大規模藻類培養の実証を行う。また、実証データを基にバイオジェット燃料の社会実装を見据えたTEA(技術経済分析)、LCA(ライフサイクルアセスメント)を実施していく予定だ。

バイオジェット燃料普及に向け、火力発電所の排気ガスを利用した大規模藻類培養の実証を開始
バイオジェット燃料普及に向け、火力発電所の排気ガスを利用した大規模藻類培養の実証を開始

三菱ケミカル 微細藻類利用事業実証PJ、NEDOに採択

, , , , ,

2020年10月6日

 三菱ケミカルは5日、同社が参画する微細藻類を利用した事業モデルの実証研究プロジェクトが、新エネルギー・産業技術総合開発機構(NEDO)の公募事業「バイオジェット燃料生産技術開発事業/微細藻バイオマスのカスケード利用に基づくバイオジェット燃料次世代事業モデルの実証研究」に採択されたと発表した。同プロジェクトはユーグレナ、デンソー、伊藤忠商事と共同で行う。

 微細藻類は光合成により二酸化炭素を吸収することからカーボンリサイクル技術の1つと位置づけられており、NEDOは地球温暖化防止対策としてバイオジェット燃料の普及を推進している。今回のプロジェクトは、その原料となる微細藻類を安定的に大量培養する技術の確立を目的としており、実用化に向けた規模での実証事業を行っていく。

 三菱ケミカルはプロジェクトの中で微細藻類の回収技術高度化を担っており、これまで培ってきた膜分離技術を活用し、現在主流となっている遠心分離法よりも効率的で低コストの回収・濃縮技術の確立を目指す。また、ろ過濃縮試験については中央大学とも連携する。

 三菱ケミカルは、プロジェクトを通じて膜分離技術を用いた微細藻類の濃縮・分離プロセスを確立し、「CO2削減」「炭素循環」「食糧・水」などの社会課題解決に貢献していく。

NEDO実証事業
NEDO実証事業

 

NEDOなど ヒートポンプ効果の定量評価で導入を促進

, , , , ,

2020年10月5日

 新エネルギー・産業技術総合開発機構(NEDO)と未利用熱エネルギー革新的活用技術研究組合(TherMAT)、早稲田大学、金属系材料研究開発センター、前川製作所はこのほど、産業用ヒートポンプの導入効果を定量評価できる「産業用ヒートポンプシミュレーター」を開発した。簡単な入力と操作で、導入後の1次エネルギー消費量とCO2排出量を短時間で高精度に試算できる。

 日本は化石燃料などの1次エネルギーの9割は輸入であり、経済的・温室効果ガス排出抑制・エネルギーセキュリティー維持の観点から運輸・民生・産業分野の省エネルギーが求められる。しかし、産業分野の多くは高温燃焼や蒸気ボイラーの熱を利用するため、多量の化石燃料を消費し温室効果ガスを排出。しかもその熱エネルギーの1部は使用されずに排熱(未利用熱)として廃棄されている。

 NEDOとTherMATは「未利用熱エネルギーの革新的活用技術研究開発」事業で、2022年度を目標に100℃弱の回収熱からエネルギー消費効率(COP)3.5以上で最高200℃の熱供給が可能な、産業用高効率高温ヒートポンプの開発を進めている。

 一方、産業用ヒートポンプ導入のための効果評価には、生産プロセスに適したヒートポンプと運転条件の選定、COP算定のための蒸気・温水温度、熱源機器のエネルギー使用量の詳細な計測データに加え、ヒートポンプの試験データが必要になり、導入検討のための多大な時間とコストが障壁となっていた。

 今回開発した「産業用ヒートポンプシミュレーター」は、想定する利用方法を選択し、冷媒の種類や定格加熱能力、時刻ごとの給水温度や流量を入力すれば、ヒートポンプのCOP、加熱能力、1次エネルギー消費量、CO2排出量を短時間で高精度に試算でき、時間とコストを大幅に節減する。

 今後、同シミュレーターで産業用ヒートポンプの導入効果を具体的に示すことで、未利用熱の有効活用を推進し、徹底的な省エネルギー化と地球温暖化防止へ貢献する。またポンプ・タンク・弁など生産プロセス全体の設計やエンジニアリングを可能にする「産業用ヒートポンプ導入支援ツール」へと高度化し、広く活用できるよう一般公開と標準化を目指す考えだ。

大王製紙 高セルロース濃度CNF複合樹脂の供試を開始

, , , , , ,

2020年9月18日

 大王製紙はこのほど、セルロースナノファイバー(CNF)の事業化に向け軽く強い特性を生かした樹脂複合化に取り組む中、セルロース濃度55%のCNF複合樹脂「ELLEX‐R55」の開発に成功し9月から供試を始めたと発表した。

 植物由来のCNFの特性を生かした、部分的にCNF化したセルロースの複合樹脂ペレット(濃度10%)のサンプル提供を2018年に開始。用途展開の可能性評価を行う中、最終製品の適性に応じたセルロース濃度や樹脂材料などの設計自由度を高めるために、セルロースの高濃度化を進めた。

 「ELLEX‐R55」はセルロース濃度が55%と高く、樹脂成形加工のニーズに合わせ、性能に応じたCNF濃度に希釈して使用できる。セルロース濃度10%程度でも樹脂単体に対し弾性率は1.7倍、強度は1.3倍に向上。材料の厚さの低減、軽量化、減プラスチックなど、環境省のプラスチック循環戦略に掲げる「2030年ワンウェイプラスチック25%減」への貢献も期待できる。

 「ELLEX‐R55」は同社紙パルプの製造基幹でCNFの製造拠点でもある三島工場(愛媛県四国中央市)で製造することで、製造・物流コストを低減する。さらなるコスト低減を目指し、CNFの前処理プロセスや複合樹脂の生産性の飛躍的改善のために新エネルギー・産業技術総合開発機構(NEDO)の「炭素循環社会に貢献するセルロースナノファイバー関連技術開発」プロジェクトに参画し、芝浦機械(静岡県沼津市)と共同で開発を進める。

 今後、「ELLEX‐R55」のサンプル提供を通じてニーズに適応した品質改善を進めつつ、CNFの早期事業化を加速させ、経営理念「地球環境への貢献」の取り組みを強化していく。

大王製紙 セルロース

NEDO 燃料電池普及拡大に向け研究開発事業を開始

, , ,

2020年9月17日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、燃料電池自動車(FCV)や定置型業務・産業用などの燃料電池(FC)の普及拡大に向け、「燃料電池等利用の飛躍的拡大に向けた共通課題解決型産学官連携研究開発事業」を開始した。2030年以降の実装を目指し、FCと水素貯蔵の基盤技術開発と実証事業を行う。今年度からの5カ年計画で、今年度予算は52.5億円。

 FCはエネルギー効率が高くCO2も発生せず、温室効果ガス排出抑制に有効だが、今後の自立的な普及拡大に向けてはさらなる高効率・高耐久・低コスト化が必要になる。またこれまでに市場投入してきた家庭用FCエネファームやFCVについても多くの課題が顕在化してきた。

 今回の事業では、①「共通課題解決型基盤技術」(19件)、②「水素利用等高度化先端技術」(20件)、③「燃料電池の多用途活用実現技術」(7件)の46テーマを通じ、課題解決を行う。

 ①は固体高分子形FC(PEFC)と固体酸化物形FC(SOFC)。PEFCはFCVの航続距離800㎞以上、最大出力密度6kW/L以上、耐用年数15年以上、FCシステムコスト4000円/kW未満が目標。高活性・低白金カソード触媒、ラジカル低減性アノード触媒、高イオン伝導率電解質膜などを開発する。

 FC材料の構造評価を共有し、研究開発の効率化と加速、電気化学分野以外の研究者による技術革新も図る。理論発電効率の高いSOFCは発電効率65%超、耐久時間13万時間以上を目指す。

 ②はFCと水素貯蔵技術で、FCは①の性能・コスト目標を上回る革新的要素技術として、非白金触媒や高温運転適合の電解質膜などの先端材料の設計指針を検討。水素貯蔵システムの低コスト化・強靭化に向け、損傷蓄積・寿命評価によるCFRP製水素タンクの効率的設計や炭素繊維の低コスト化を図る。

 ③は多様な用途での活用に向け、FCサプライヤー/ユーザー連携の実証事業と、システムコスト低減のための生産・検査技術の開発を支援する。

 同事業により世界に先駆けて市場導入した日本のFC技術の競争力をさらに強化し、世界市場での地位を確立し、水素社会の実現に貢献する考えだ。

事業の展開イメージ
事業の展開イメージ

旭化成と東北電力ネットワーク 浪江町のNEDO水素実証事業に参加

, , , , , ,

2020年9月17日

 旭化成など5社はこのほど、東芝エネルギーシステムズ、東北電力、岩谷産業の3社が、2016年から福島県浪江町で進めてきた、新エネルギー・産業技術総合開発機構(NEDO)の水素実証事業について、同事業のさらなる拡充・強化を目的に、旭化成と東北電力ネットワークが新たに参加し、さらに期間を2023年2月末まで延長した委託契約を締結したと発表した。

 NEDOの実証事業は「水素社会構築技術開発事業/水素エネルギーシステム技術開発/再エネ利用水素システムの事業モデル構築と大規模実証に係る技術開発」(2016~2022年度)で、2016~17年度は基礎検討(FSフェーズ)を実施。2017~2020年度まではシステム技術開発(実証フェーズ)を実施している。

 今年3月には「福島水素エネルギー研究フィールド(FH2R)」が開所。世界最大規模の10MW級水素製造装置を活用し、電力系統への需給バランスの調整に貢献することで、蓄電池を使わずに出力変動の大きい再生可能エネルギーの電力を最大限利用するとともに、クリーンで低コストの水素製造技術の確立を目指してきた。

 今後は5社体制で、実証フェーズを2022年度まで延長し、「Power‐to‐Gas」の実用化に向けた技術の確立を目的として、各種制御システム(水素エネルギー運用システム、電力系統側制御システム、水素需要予測システム)や水電解技術のさらなる高度化を目指していく。

 旭化成は、同事業向けに世界最大規模の10MW級大型アルカリ水電解装置を自社技術で新規設計し納入。今後は、サプライヤーの立場から委託事業者として事業に参画し、主に水電解装置関係の技術開発を担当。同事業で得た成果により、大型水電解装置の早期実用化を目指す。

 5社は、同事業を通じ、再生可能エネルギー由来の水素の利用拡大に向けた技術開発を推進。水素エネルギー運用システムの最適運用を行うことで、2030年以降の持続可能な「Power‐to‐Gas」事業モデルの商用化を見据え、再生可能エネルギーの利用拡大へ向けた取り組みを推進していく考えだ。

水素実証事業の全体像
水素実証事業の全体像

 

 

 

NEDO 海洋生分解性プラの社会実装に向けた技術開発

, ,

2020年9月16日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、海洋生分解性プラスチックの社会実装に向けた技術開発事業に着手すると発表した。同分解性の評価手法や新素材の開発により社会実装・市場拡大を進め、2030年には海洋生分解性プラスチックの国内市場年20万tを目指す。

 プラスチックは汎用される一方でほとんど分解せず、海洋プラごみによる海洋汚染が問題視され、海洋生分解性の新素材開発と海洋生分解性の簡便で信頼性の高い評価法が求められている。

 今回の「海洋生分解性プラスチックの社会実装に向けた技術開発事業」は今年度からの5年計画の予定で、今年度予算は3.45億円、採択テーマは次の2件だ。

 ①「海洋生分解性に係る評価手法の確立」(産業技術総合研究所、製品評価技術基盤機構、静岡県環境衛生科学研究所、東京大学、愛媛大学、島津テクノリサーチ)では、海洋生分解性プラスチックの分解メカニズムの解明、海洋生分解性の評価手法の確立、分解途中での水中汚染物質の吸着や樹脂添加剤の溶出など生態系への安全性の評価手法を開発する。

 ②「海洋生分解性プラスチックに関する新技術・新素材の開発」(日清紡ホールディングス)では、新規化学構造をもつ新素材や新規バイオ製造プロセス、複合化技術などの新技術による海洋生分解性プラスチックの開発を行う。