産総研 抗体の高次構造の完全・非破壊的解析技術を開発

, , ,

2020年7月1日

 産業技術総合研究所(産総研)はこのほど、東京大学、中外製薬と、抗体の高次構造(HOS)情報を、製剤条件・低温保存温度で非破壊的に取得できる独自のNMR測定技術を開発したと発表した。

 バイオ医薬の躍進に伴い、その薬効や安全性をHOSに基づいて評価することが求められ、溶液中の抗体タンパク質のHOSの適切性や、熱劣化していないことの確認が必要となる。しかし、抗体などの高分子量バイオ医薬のHOS情報を、溶液組成や測定温度に制約されずに、非破壊的に取得する技術はなかった。産総研が昨年開発した「FC‐TROSY法」により、分子量15万超の抗体の非破壊観測は可能となったが、芳香族アミノ酸の観察に限られる上、フッ素核導入によるタンパク質のHOS変化もゼロではない。

 今回開発した「窒素核観測CRINEPT法(N‐CRINEPT法、窒素15直接観測と交差緩和による低感度核の感度増強法)」は、安定同位体「窒素15」標識をアミド部分に施す必要があるが、フッ素導入は不要でありフッ素によるHOS変化の恐れはない。そしてプロリンを除くすべてのアミノ酸残基由来の信号を取得できる。

 また、分子量15万超のタンパク質のNMR解析に必要であった重水素化が不要となり、重水素化が困難な新型コロナウイルス(SARS‐CoV‐2)の表面タンパク質などの大きな膜タンパク質の解析も可能となった。これにより、HOS情報の網羅性改善と完全非破壊性を実現し、製剤保存条件でのありのままの抗体分子のHOS情報を取得できるようになった。またNMR法で解析可能なタンパク質の数が飛躍的に増えたことにより、抗体医薬の研究開発への貢献が期待される。

 今後は、「N‐CRINEPT法」を研究・開発段階の抗体医薬に適用するなど、社会実装を進める。また、NMR法を用いた創薬支援基盤技術をさらに発展させ、バイオ医薬に限らず低分子、中分子など多様な医薬に対応できる創薬基盤技術プラットホームを構築していく考えだ。

 

産総研と日立 新たな移動体データ記述形式、国際標準仕様に

, , ,

2020年6月30日

 産業技術総合研究所(産総研)と日立製作所はこのほど、人や自動車などの移動体の位置・時間情報を表す新たな移動体データ形式「MF‐JSON形式」を地理空間情報の国際標準化団体(OGC)に共同で提案し、国際標準仕様として採択されたと発表した。

 人や自動車など様々な移動体の動的な空間情報を一体的に記録することで、移動データの流通・利用の促進に貢献する。通信技術やGPSなどのセンサ技術の発展で、人やモノなどの移動体の時間によって変化する位置情報(移動データ)の収集は容易になった。

 移動データを流通し共有することは、自動運転や防災、公衆衛生対策などに重要であるが、移動データの標準的な交換形式が無くシステムごとにデータ形式が異なるため、システム間の円滑なデータ連携に問題があった。

 今回採択された「MF‐JSON形式」は、既存のOGCデータ交換形式の問題点を改善したもので、6月に公開された。XML形式よりデータ記述量が少なく、CSV形式より多様な移動体を記述可能。3次元形状の物体移動データを簡潔に記述でき、ウェブ環境で利用しやすくなった。

 GPSからの人流データ(点形状)、道路交通渋滞情報(線形式)、洪水浸水区域の拡大(面形状)、自動車の走行(立体形状)などの動的な地理空間情報に加えて、気温、カメラ画像、速度センサなどから得られる時系列データを、移動体の動的な属性情報として一体的に記述できる。

 このように多様な移動体情報をより高精度に共有・利用できるため、人々の移動状況や密接度などの時間的・空間的な分析に即したマイクロマーケティングやロボットを利用した災害時の効率的な避難誘導、細街路を活用する超小型車両交通システムなど、新たなサービスへの応用が期待される。

 今後は、自動運転や移動ロボット、ドローンなどの安全・安心な移動の支援に加え、工場・倉庫の作業員の作業改善、公共施設・駅構内の混雑緩和などの移動データの時空間パターン分析のサービスインターフェースに関して、国際標準化を図る考えだ。

東大と産総研 電子励起状態のAI予測で解析時間を短縮

, ,

2020年6月26日

 東京大学生産技術研究所と産業技術総合研究所(産総研)はこのほど、励起状態にある電子構造を人工知能(AI)で高速かつ高精度に予測する新手法を開発した。この手法を電子励起分光スペクトルに適用することで、物質の構造解析や環境物質調査、医療診断に要する時間の大幅短縮が可能となる。

 半導体設計、電池開発、触媒解析の現場で、物質構造を調べる方法の1つに電子励起分光スペクトル測定がある。X線・電子線を照射して物質中の電子を励起し、その励起状態に応じて得られるスペクトルを解析することで物質の原子配列と電子構造を調べる方法だ。それにはコンピュータで電子の励起状態を再現し、スペクトルを理論計算する必要があり、膨大な時間を要する。また励起状態は複雑なため、物質間の励起状態の違いなど、基礎的な知見がなかった。

 研究グループは、酸化シリコン(SiO2)の「結晶」と「アモルファス(非晶質)」の励起状態と基底状態について、1200個近いスペクトルをデータ化。それを使って基底状態と励起状態の関係性をニューラルネットワークに学習させ、基底状態の情報をもとに励起状態の電子構造を高速・高精度に予測できるAIを構築した。

 その結果、スペクトルの理論計算を数百倍に高速化できた。さらに、SiO2で作成した予測モデルを酸化マグネシウムや酸化アルミニウム、酸化リチウムなどに適用した結果、結晶構造や構成元素が異なるにもかかわらず、それらのスペクトルを高精度に予測できた。このことは、SiO2とこれら酸化物の励起状態が類似していることを示唆している。

 一方、結晶SiO2で作成した予測モデルをアモルファスSiO2に適用すると予測精度が著しく低く、同じ組成物であっても原子配列によって励起状態が異なることが明らかになった。

 今回は内殻電子励起スペクトルに適用したが、赤外分光やラマン分光などの励起状態が関わるスペクトルにも展開することで、物質の構造解析や環境物質調査の時間を大幅に短縮でき、物質科学や環境問題の解決、医療技術の発展などへの貢献が期待される。

産総研など コロナ対策関連のAI情報をウェブで公開

, , ,

2020年6月25日

 産業技術総合研究所(産総研)、理化学研究所(理研)、情報通信研究機構(NICT)はこのほど、昨年12月に設立した「人工知能研究開発ネットワーク(AI Japan)」の会員数が100を超えたこともあり、ウェブサイトを開設・公開した。

 同ネットワークは、人工知能(AI)の研究開発に関する統合的・統一的な情報発信やAI研究者間の意見交換の推進などを目的とし、AIに係る研究開発などに積極的に取り組む大学・公的研究機関を対象に会員募集を進めていた。同ウェブサイトでは、日本のAI研究開発に関する情報の集約化を図り、各会員のAI研究開発に係るプレスリリースやイベントなどの最新トピック紹介など、一元的な情報発信を行う。

 第1弾として、会員大学・公的研究機関およびその研究者による「新型コロナウイルス感染症対策関連に係るAIを活用した取り組み」を公開した。AIは治療薬開発、感染シミュレーション、遠隔環境整備など、新型コロナ感染症対策に広範に貢献できる技術。会員に対してAIを活用した取り組みを調査し、登録された23大学・公的研究機関から69件の活動が登録された。

 今後も、ウェブサイトを通してAIの研究開発に係る統合的・統一的な情報発信に取り組んでいく。詳細はウェブサイト(https://www.ai-japan.go.jp/)に掲載。

 

産総研 GHG排出削減を目指しゼロエミベイを始動

, , ,

2020年6月22日

94者参画、東京湾岸をイノベーション拠点に

 産業技術総合研究所(産総研)が主導する、温室効果ガス(GHG)排出削減に向けた新たな取り組み「東京湾岸ゼロエミッションイノベーション協議会」(ゼロエミベイ)が発足し、本格的な活動が始まった。

ゼロエミベイの柏木孝夫会長
ゼロエミベイの柏木孝夫会長

 今月16日に第1回総会を都内で開催。同協議会を率いる柏木孝夫会長(東京工業大学特命教授・名誉教授)は「世界には様々なイノベーション拠点があるが、ゼロエミッションのように、扱う分野が広範囲にわたるものを組み合わせて実証していく例は見当たらない。

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

JXTGホールディングス 東京湾ゼロエミ・イノベーション協議会に参画

, ,

2020年6月15日

 JXTGホールディングスはこのほど、産業技術総合研究所(産総研)が設立した「東京湾岸ゼロエミッションイノベーション協議会(ゼロエミベイ)」に参画した。同協議会は、政府の「革新的環境イノベーション戦略」に基づき、東京湾岸周辺エリアを世界に先駆けてゼロエミッション技術に係るイノベーションエリアとすることを目指す。

 同エリアには、エネルギー・環境関連の多種多様な企業やその研究所、大学などが集積。各機関が連携することで、水素利用やCO2の回収・貯留・利用(CCUS)などのゼロエミッション技術に関する世界最大の研究開発と実証の場としての高い可能性を持つ。

 同社は、協議会への参画を通じ、グループが保有するゼロエミッション分野の技術や知見を、会員企業との連携によってさらに発展させ、低炭素循環型社会の形成へ一層の貢献を果たしていく。

 同社グループは、「2040年長期ビジョン」に掲げた「低炭素・循環型社会への貢献」の実現に向けた取り組みを推進し、2040年には、自社CO2排出のカーボンニュートラルを目指す。

産総研 東京湾岸をゼロエミッション版シリコンバレーに

, , , ,

2020年6月11日

 産業技術総合研究所(産総研)はこのほど、東京湾岸周辺エリアを世界に先駆けてゼロエミッション技術に係るイノベーションエリアとするため、「東京湾岸ゼロエミッションイノベーション協議会(ゼロエミベイ)」を設立した。会長は東京工業大学特命教授・名誉教授の柏木孝夫氏が就任し、事務局は1月に産総研が設立した「ゼロエミッション国際共同研究センター(CZR)」(センター長は旭化成名誉フェロー吉野彰氏)が担う。

 東京湾岸には、電力・ガス・石油・化学・電機・自動車など多様なエネルギーサプライヤーやユーザーなどの事務所や研究施設、大学が多くある。これらが様々な分野で連携すれば、ゼロエミッション技術に関する世界最大の研究開発・実証に関するPRの場所となり得る。 

 こうした中、政府が今年1月に策定した「革新的環境イノベーション戦略」の下、産学官の協議会を設置し、中長期的な視点でゼロエミッションに関する研究開発・実証プロジェクト(水素利用、二酸化炭素回収・有効利用・貯留、エネルギーマネジメントなど)の企画・推進、広報活動などが提言された。

 それに基づき、ゼロエミベイでは主な活動として、①湾岸周辺エリアの企業、大学、研究機関、行政機関などの活動情報を含むエリアマップ「ゼロエミベイマップ」の作成と海外への発信、②研究開発・実証プロジェクトの企画・推進と成果の普及・活用、③同技術に係る研究開発・実証、ビジネスへの取り組みに関する会員間の情報交換と連携の推進、④目的達成に必要なその他事業、などを行う。

 今後、趣旨に賛同し東京湾岸エリアでゼロエミッション活動を行っている会員を募集し、設立総会を6月16日に開催する。その後「ゼロエミベイマップ」をウェブサイトに掲載するなど本格始動する予定だ。入会案内などの詳細は、専用サイト(https://unit.aist.go.jp/gzr/zero_emission_bay/)まで。

産総研など 細胞パターニングを効率化するデバイス作製

,

2020年6月8日

 産業技術総合研究所(産総研)と理化学研究所(理研)の共同研究グループはこのほど、水溶性タンパク質のアルブミンを原料としシリコーンゴムの鋳型で型取りすることにより、細胞培養用の微小デバイスを簡単に作製することに成功した。

 微小デバイス開発のための工学的成果にとどまらず、微小デバイスを用いた細胞培養により、微小環境が細胞に与える影響や、細胞と細胞接着基材表面のタンパク質との相互作用の理解への貢献が期待されている。

 細胞生物学では、細胞が接着する基材表面を化学的処理などにより、細胞が接着する部分としない部分に分画する、細胞接着エリアの制御「細胞パターニング」という手法が行われる。理研が開発してきた寒天由来のアガロースを用いた細胞パターニング法による細胞培養用デバイスは、長期間の細胞培養でも安定していたが、作製(乾燥)に3日以上かかることが課題だった。

 今回、半導体製造に使われるフォトリソグラフィー手法に注目し、微小な溝を彫ったシリコーンゴム鋳型を作り、材料の流入挙動を解析。材料溶液の流入量は主として溝のサイズに依存し、溶液粘性とは無関係に多様な材料が使用できることが明らかになった。

 産総研が開発した「架橋アルブミン」水溶液は、いったん乾燥すると水には溶けず、固形材料に加工できる。これを使い、1日以内で細胞パターニング用の微小デバイスを作製。7日間の細胞培養にも耐えた。またアガロース同様、表面に細胞が接着しないことも確認できている。

 今回使用した架橋アルブミンを利用すれば、細胞培養用の微小デバイスが短期間で作製でき、実験の効率化が図れる。さらに、同技術を「細胞接着性」の水溶性タンパク質に展開することで、細胞の形状や発生・分化といった細胞機能と細胞接着性タンパク質の、相互作用理解のための特定構造・形状を持つ細胞接着性微小デバイスへの応用も可能だ。

 理研では、シリコーンゴム鋳型などの微細加工デバイスサービスを提供しており、産総研の架橋アルブミンと組み合わせることで、世界中の研究者が同手法に容易にアクセスできるとしている。

 

産総研 都市域の大気観測でCO2排出量を起源別に推定

, , , ,

2020年6月3日

 産業技術総合研究所(産総研)はこのほど、防衛大学校地球海洋学科などとの共同研究により、大気中のCO2とO2の高精度観測から、CO2排出に使用された化石燃料の種類ごとに評価する手法を開発した。

 産総研などは2012年から、東海大学・代々木キャンパス内の観測タワー上に装置を設置し、代々木街区の人間活動により排出されるCO2の観測を行っていた。この手法は、産総研が開発した大気中のO2の超高精度濃度計測と、主に森林CO2吸収の評価で用いられる鉛直CO2輸送量の計測を都市部での観測に応用し、O2とCO2の交換比(Oxidative Ratio:OR)を導出するもの。消費する化石燃料の種類や生物活動により、ORが異なるため(都市ガス=1.95、石油=1.44、ヒト=1.2)、CO2排出量を起源別に定量化できる。

 今回の大気観測では、産総研が持つ世界最高の超高精度(6桁、PPMレベル)の大気濃度観測技術を用いて、高度52mと37mの2点でO2とCO2の濃度を観測。高度別の濃度勾配に基づく傾度法によって鉛直輸送でのORを導出することで、局所スケールのCO2排出を化石燃料種別に評価した。

 都市部でのCO2排出源として石油(主に自動車)、都市ガス、人間呼吸に注目し、観測で得られたこれら起源別のCO2排出量を、代々木近郊の自動車交通量、家庭・飲食店の都市ガス消費量および人口統計のデータに基づくCO2排出量と比較。その結果、夕~夜間の都市ガス消費データに基づく排出量が観測値に比べて多かったことから、この地区の統計データ基準では、実際よりも過大に見積もられてしまうことが示唆された。

 また、給湯・調理に伴う早朝の都市ガス消費のピークや、通勤時間帯の交通量増加による午前中の石油消費の漸増も見て取れるなど、大気観測に基づき自動車と都市ガス由来のCO2排出量を街区スケールで分離評価することが可能となった。

 同手法は消費する化石燃料の種類毎に評価できるため、ゼロエミッション技術が社会実装されたときのCO2削減効果を、実環境計測に基づいて検証する技術として期待される。今後、放射性炭素同位体比の観測を組み合わせ、大気観測だけで石油・都市ガス・人間呼吸による排出量を分離する手法を目指す考えだ。

 

NIMSと産総研 エチレン高感度・高選択モニタリング

, , ,

2020年5月26日

 物質・材料研究機構(NIMS)と産業技術総合研究所(産総研)はこのほど、植物ホルモンであるエチレンを常時モニタリングできる小型センサを開発した。

 エチレンは野菜や果物の熟成を促進させるが、過剰にあると腐敗を進行させてしまう。同センサによってエチレンを常時モニタリングすることで、野菜や果物の最適な輸送・保存管理が可能となり、食べ頃の調整やフードロスの削減などが期待される。

 現在市販されているエチレン検出用小型センサの多くは、高温状態(200~300℃)での駆動が必要であるため、センサ表面の活性は高く、アルコールやメタンといった他の還元性ガス分子とも反応してしまい、エチレンの選択的な検出が難しかった。

 同センサは、①エチレンを選択的にアセトアルデヒドに変換する高活性触媒(Pd‐V2O5‐TiO2)、②アセトアルデヒドと反応して酸性ガス(HCl)を発生する試薬(Wacker反応)、③酸性ガスを高感度に検出する単層カーボンナノチューブ(SWCNT)修飾の電極、の3要素からなり、エチレンを選択的かつ繰り返し高感度で検出することに成功した。

 高活性触媒は、エチレンを含む空気を通過させるだけで㏙レベルのエチレンをほぼ全てアセトアルデヒドに変換でき、繰り返し利用可能。低温(40℃)で駆動するため、低消費電力である点でも小型センサに適している。

 発生した酸性ガスは、半導体SWCNTから電子を引き抜き、電気抵抗値を変化させる。その感度は、1㏙のエチレンに対して電流変化率約10%と世界最高レベルであり、わずか0.1㏙のエチレンを高選択的にモニタリングできる。

 例えば、バナナとキウイフルーツの熟成(追熟)に用いられるエチレンの濃度は、それぞれ約500㏙と約10㏙なので、同センサで十分に対応可能。また、産総研の持つ半導体SWCNTの分離精製技術により、わずか1gのSWCNTから数100万個のセンサが作製できる。高活性触媒に含まれるパラジウム(Pd)も、1センサ当たり0.8㎎程度なので、コストは10円以下である。

 同エチレンセンサは小型、省電力であり、情報(ビックデータ)を集積・ネットワーク化するセンサデバイスを低コストで設置可能。農業・食品業界のSociety5.0実現への取り組みを推進する。さらに、別の高活性触媒を設計し、エチレン以外のガス分子に対応する小型センサの開発も進める考えだ。