産総研 熱や光の刺激で自在に剥がせるプライマーを開発

,

2021年10月8日

 産業技術総合研究所(産総研)はこのほど、接着力が強く、光や熱の刺激で容易に剥離できる解体性プライマーを開発した。化学結合の開裂を利用するため、刺激を加える前は基材・接着剤間の化学結合で接着力は強く、光や熱などの刺激で化学結合が切断し簡単にきれいに剥がれる。

 従来の光液化-固化型接着剤は、接着成分の形状や硬さの変化を利用するため、加熱や光照射に多くのエネルギーが必要な上、高い接着力と剥離性能の両立が困難であった。新しいプライマーは接着力が強く、わずかなエネルギーで剥離できる。

 アントラセンは特定波長の光を吸収して二量体となり、高温もしくは紫外光(波長300㎚以下)で開裂して元のアントラセンに戻る。今回、ガラス基板に化学的に吸着するアルコキシシリル基を導入したアントラセンに波長405㎚の光を照射し、光二量化させた。

 その溶液をガラス基板に塗布・乾燥して解体性プライマー層を形成。その表面に湿気硬化型接着剤で柔軟な樹脂フィルムを貼り合わせて剥離試験を行った。90度剥離強度はプライマー不塗布時の約2倍に増加し、ガラス基板表面には接着剤が残った。180℃で1分間加熱すると剥離強度は60%低下し、接着剤はガラス基板表面には残らずきれいに剥離した。

 また波長254㎚の光を1分間照射した場合、剥離強度は33%低下し、使った光照射エネルギーは30mJ/㎠で、光液化-固化型接着剤の場合の5%未満だ。剥離後のガラス基板表面にアントラセン単量体が確認されたことから、プライマーの分解により剥離が進行したことがわかった。

 この解体性プライマーにより異種素材の接着・解体ができるため、リサイクルやリユースの促進に有効だ。接着以外にも、インクの除去や、刺激に応じて摩擦力が変化する表面処理剤などへの応用が期待される。

 今後、プライマーの構成分子を検討し接着強度の向上を目指すとともに、刺激の種類と条件や適用可能な基板の種類を拡大させ、省エネルギーで汎用性の高い剥離技術として展開できるよう、研究開発を進めていく予定だ。

産総研とJARI モビリティ研究の連携・協力協定締結

, , ,

2021年10月7日

 産業技術総合研究所(産総研)と日本自動車研究所(JARI)はこのほど、モビリティ・サービス分野における連携・協力の推進に関する協定を締結したと発表した。

 若年者や高齢者など年齢に関わらず安心・安全で誰でも自由に移動でき、都市部や過疎地域といった地域性に依存することなく持続的に運用可能なモビリティ・サービスの創出と社会実装の促進を図る。これにより、過疎化に伴う地方公共交通機関の衰退、加齢に伴う移動の制限や不自由などの社会課題を解決し、誰でも楽しく移動できる社会の実現を目指す。

 歩行支援、パーソナルモビリティから公共交通機関まで幅広く多様なモビリティに必要な生体計測、安全評価、データ解析、データ連携などの要素技術の研究が対象となる。また、MaaSや3Dマップなどの基盤を構築し、交通量の多い都市部や交通インフラが不十分な過疎地域など、どのような地域でも対応可能なモビリティ・サービスに関する研究協力を行う。

 両者の産業界とのネットワークを相互活用し、技術やサービスの社会実装を促進していく考えだ。

 

産総研 ポータブルなエチレンセンサーの試作機を開発

, , , , ,

2021年10月5日

 産業技術総合研究所(産総研)はこのほど、物質・材料研究機構と共同で、植物ホルモンの1つであるエチレンを選択的に検出する試作機を開発した。

 ポータブルで、簡単な操作により、青果物(野菜や果物)の品質管理で鍵となるエチレンガスの濃度を貯蔵や物流時に容易に測定できる。青果物は収穫後も呼吸を続け、様々な植物ホルモンを発生させる。

 気体状のエチレンは、青果物の成熟や老化を促進する作用がある。発生量と作用の大きさは青果物の種類により異なるため、エチレン濃度のモニタリングは、倉庫内での貯蔵や果実の追熟による出荷時期調整において、食べごろの提示やフードロス削減に直結し重要である。しかし、エチレンを選択的に計測できる小型・安価なセンサー装置はなかった。

 両者は、エチレンをパラジウム触媒でアセトアルデヒドに変換し、アミン塩試薬と反応させて発生した塩酸ガスによりカーボンナノチューブ(CNT)センサーの抵抗値が下がる原理を使い、参照センサーと検出センサーの電位差でエチレン濃度を測定する方法を開発。しかし、既存のセンサーでは共存ガスの影響で誤検知が起こる場合があり、操作には専門技術や研究用計測器を必要とした。

 今回、両センサーの前にエチレンに不活性な触媒層を設け、共存ガスの外乱による影響をキャンセルした後、検出センサーの触媒層をパラジウム触媒層に切り替えて測定することで、エチレンの確実な検出が可能となった。ユーザーによる正面パネルの簡単な操作で測定でき、エチレンの検出下限は0.2㏙程度、上限は100㏙程度だ。

 今後、同試作機を企業へレンタルして実地検証を進め、早期の社会実装を目指す。また定期的な校正を不要とするよう、センサー材料の長期安定改良を継続する。

産総研 もみがら・米ぬかと微生物で重金属廃水を浄化

, , , , , ,

2021年9月30日

 産業技術総合研究所(産総研)はこのほど、石油天然ガス・金属鉱物資源機構(JOGMEC)と共同で、米ぬかを栄養源にした硫酸還元菌の活性を利用し、重金属を含む鉱山廃水を安定的に浄化する廃水処理装置の運転管理技術を確立した。

 日本国内には、稼働を休・停止した鉱山跡地が多く存在し、重金属を含む酸性の鉱山廃水が発生する場合がある。このような場所では、環境への悪影響を防止するために、廃水処理が続けられている。

 一般に鉱山廃水は、専用の設備や化学薬品を使って中和処理されるが、近年は、微生物活性を利用した低コスト・低環境負荷の処理技術に注目が集まっている。JOGMECは、農業廃棄物であるもみがらと米ぬかをそれぞれ微生物の担体と栄養源として活用し、硫酸還元菌の働きによって重金属を沈殿除去する装置の開発を行ってきた。しかし、装置内でどのような微生物が働いているかが未解明であり、装置の安定的な維持管理方法が確立できていなかった。

 両者は、処理装置に不可欠な微生物の特定と運転条件の最適化に取り組んだ。その結果、ある硫酸還元菌のみが嫌気度の低い環境に対して例外的に強く、この菌の活性を維持することが安定な廃水処理に重要であることを解明した。この技術は、低コスト・低環境負荷で重金属を含む廃水を浄化できるため、鉱山廃水だけでなく産業廃水への応用も期待できる。

 現在、JOGMECは今回開発した装置を大規模化した実証試験を行っており、その装置内の微生物について、両者は共同で解析を行う予定。また、米ぬか以外の有機物を使った装置の開発も進め、様々な条件の廃水への適用を進めていく考えだ。

 

産総研と北海道大学 CO2からのブタノール連続生産を達成

, , , , ,

2021年9月29日

 産業技術総合研究所(産総研)と北海道大学はこのほど、CO2を原料に、アルコールの一種であるブタノールを連続生産する技術を共同開発した。CO2を直接原料として使う、新たな化学品合成プロセスとして期待される。

 年間1000万t以上のアルコールやアルデヒドが、プロピレンなどの不飽和炭化水素、CO、水素を原料にしたヒドロホルミル化反応(オキソ反応)により、コバルトやロジウム錯体触媒を使ったバッチ式反応で製造されている。金属錯体触媒は生成物との分離や再利用に課題がある。固体担体に固定化する手法が提案されてきたが、反応性が変化し、耐熱性が低下してしまう。

 産総研は、ルテニウム錯体がCO2をCOに変換する触媒機能をもつことに着目し、毒性の高いCOの代わりにCO2を使うオキソ反応を世界に先駆けて開発した。しかし錯体触媒は有機溶媒に溶解させて使うため、耐圧反応容器を使うバッチ式反応プロセスが必要であった。

 今回イオン液体を使って、ルテニウム錯体触媒をシリカゲル表面に薄膜状に固定化した触媒を開発。薄膜状のイオン液体中のルテニウム錯体触媒は、有機溶媒中と同様に反応する上、外観はシリカゲルと同じ粉体であるため、一般的な固体触媒と同様に扱える。

 またイオン液体は、オキソ反応温度域では揮発しないので、触媒を担体上に安定に保持できる。これにより、CO2と水素とプロピレンから、ブタノールを連続的に生産することが可能になった。高圧フロー式反応装置で反応圧8・6M㎩、反応温度170℃、約8時間の反応では、従来のバッチ式反応プロセスに比べ、時間当たりの収率は10倍になった。

 今後は主生成物の選択性と触媒の耐久性の向上のため、新たな金属錯体触媒やイオン液体の改良を行っていく。また、幅広く他の原料への適用可能性も検討していく。

今回開発したCO2を原料としたアルコール合成プロセス

 

NEDOと産総研 誘電体基板の温度特性が計測可能に

, , , ,

2021年9月16日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、産業技術総合研究所(産総研)と共同で、高周波回路などに使われる金属張りの誘電体基板の誘電率と導電率の温度特性を、10G㎐~100G㎐超の超広帯域で計測する技術を確立した。幅広い温度域での低損失化が要求されるミリ波対応材料の開発を後押しするとともに、ミリ波を使う次世代高速無線通信のポスト5G.6G実現に向けた材料やデバイスの開発期間の大幅な短縮が期待される。

 今回の技術の確立に際し、両者は新たに温度制御可能な超広帯域動作の共振器を開発。この装置は、ミリ波帯での超広帯域の材料計測が可能な平衡型円板共振器を、銅板に埋め込んだヒーターと熱電対で局所加熱して温度制御するもので、恒温チャンバーや耐熱性ミリ波ケーブルなど大掛かりで高コストな装置や部材を使わずに、100G㎐超までの超広帯域特性を、室温から100℃の温度域で計測できる。誘電体基板材料の誘電率と導電率の温度特性を計測することで、材料設計・開発へのフィードバックだけでなく、計測した材料を使った回路やデバイス性能の温度依存性の推定が可能になる。

 今回、シクロオレフィンポリマーと合成石英の誘電率と、シクロオレフィンポリマー基板上に形成した金属層の導電率の温度依存性を計測しシミュレーションしたところ、シクロオレフィンポリマー基板回路の125G㎐での伝送損失(㏈/㎝)は、温度が25℃から100℃に上昇すると約18%増大することがわかった。

 今後、産総研は今回開発した材料計測技術と計算科学やプロセス技術を融合し、より良い物性値のミリ波対応材料を得るための分子構造や配合比、プロセスなどの最適化条件を予測できるように、データプラットフォームの拡充に取り組む。

NEDOなど 固体表面の高速・高分解能測定技術を開発

, , , ,

2021年9月14日

 新エネルギー・産業技術総合開発機構(NEDO)はこのほど、人工知能(AI)を使った材料開発プロジェクト「超先端材料超高速開発基盤技術プロジェクト」で産業技術総合研究所(産総研)と先端素材高速開発技術研究組合(ADMAT)が金属酸化物の固体表面解析に必須の動的核偏極核磁気共鳴法(DNP-NMR)で高速・高分解能なスペクトルを得ることができる測定技術を開発したと発表した。固体材料表面の高速・高精度解析が可能になり、触媒の合成や表面処理などが革新的材料の開発時間を大幅に短縮できる。

 固体触媒の開発では、触媒表面の化学構造を知るために酸素をはじめとする各種原子核のNMR測定が重要だが、四極子核に対する測定感度とスペクトル分解能が低く、適用範囲はH、C、N、Siなどに限られていた。

 今回、マイクロ波照射で感度を上げるDNP-NMRに、四極子核測定を可能にする新設計の照射プログラムと高分解能化のための新型パルスプログラムを組み込むことで、固体表面の四極子核の高速・高分解能の観測が可能となり、O、Zn、Mo、TiなどのNMRスペクトル観測に成功した。

 触媒担体として汎用されるγ-アルミナ(Al2O3)は、従来のNMRではAl-O結合に由来する構造が示唆されるだけであるのに対し、今回Al-Oの各ピークが分離され、3配位、4配位、6配位構造と、表面上にのみ存在する5配位構造が実測できた。

 引き続き、同事業で様々な金属酸化物の表面構造を詳細に解析し、高度な計算科学や高速試作・革新プロセス技術、先端計測評価技術を融合し、材料開発の加速と製品性能や製品寿命に優れた超先端材料の開発に貢献する考えだ。

 

産総研 透過光量を抑制する液晶材料の熱安定性を向上

, , ,

2021年9月10日

 産業技術総合研究所(産総研)はこのほど、神戸市立工業高等専門学校(神戸高専)、大阪有機化学工業と共同で、透明と白濁の切り換え繰り返しで高い耐久性をもつ液晶と高分子の複合材料を開発したと発表した。液晶と異方構造を有する高分子(異方性高分子)の複合材料は、生活温度付近で、低温で透明、高温で白濁に切り換わる機能をもち、調光ガラスなどへの応用が期待されている。

 近年、建物や移動体の省エネ化とユーザーの快適性の両立が着目され、有用な部材の開発が進んでいる。窓は太陽光を取り込むために必須である反面、太陽熱は冷暖房負荷や快適性に大きく影響する。調光ガラスは、太陽光の入射量を制御する部材で、様々な方式が提案されてきた。例えば、電気や雰囲気ガスで動作させるタイプは、ユーザーが切り換えたり自動化したりできる点で利便性が高く、特に電気方式はすでに上市されている。しかし、施工時の配線など設置条件や導入・運用費用にまだ課題が残る。それに対し、熱応答型は電源を必要とせず、施工後の後張りや必要に応じて剥がすといった取り扱いの容易さなどで有利な面がある。

 産総研は、多様なニーズに応えるため、電気、ガス、温度に応じて光の反射、吸収、透過が変わる様々な調光ガラスの開発を進め、それぞれの特徴を生かした提案を行ってきた。こうした中、3者は共同で、可視光の直進透過率を80%以上かつ太陽光の透過率を20以上制御する熱応答型の調光材料を2019年に開発。透明/白濁の繰り返し耐久性に課題があったが、今回、異方性高分子を架橋剤で網目構造化したことで、材料の熱安定性が高まり、繰り返し耐久性が大幅に向上。窓ガラスのメンテナンス保証期間(10年程度)に相当する回数で温度変化を繰り返しても持ちこたえる耐久性向上を達成し、実用化のめどがついた。次の段階では、耐久性と並ぶ実用化の課題であるコスト削減に着手する。

 一方、ガラス基板を用いた調光ガラスは、新築建物などの窓ガラス施工時の導入が想定される。国内にはすでに窓が設置された既築物件が多くあり、同技術を普及させるため、今後、後張りできる柔軟性のある透明基材による調光フィルムの開発に取り組む考えだ。

 

浜松ホトニクスなど 指先サイズの波長掃引レーザー開発

, , , ,

2021年9月8日

 浜松ホトニクスはこのほど、独自の微小電気機械システム(MEMS)技術と光学実装技術を活用し、従来製品の約150分の1の世界最小サイズの波長掃引量子カスケードレーザー(QCL)を開発した。これにより、全光学式の分析装置を小型化できる。 

従来比約150分の1となる世界最小サイズの波長掃引QCL
従来比約150分の1となる世界最小サイズの波長掃引QCL

 火山の噴火予知のために火口付近の火山ガス中の二酸化硫黄や硫化水素などをモニタリングする際、電極でガスを検知する電気化学式センサーによる分析装置が多く使われるが、電極は火山ガスと接し性能劣化し短寿命であるため、長期間の安定的モニタリングにはメンテナンスが欠かせない。また全光学式の分析装置は、省メンテナンスで高感度、長期間安定して使用できるものの、光源が大きく装置が大型であるため、火口付近への設置は難しい。

 そこで、新エネルギー・産業技術総合開発機構(NEDO)が進める「IoT社会実現のための革新的センシング技術開発」で、同社と産業技術総合研究所(産総研)は昨年から小型・高感度・高メンテナンス性の全光学式次世代火山ガスモニタリングシステムの研究開発に取り組んでいる。

 光源のQCLは、中~遠赤外波長領域の高出力半導体レーザー。波長掃引QCLは、その光を高速で角度が変化するMEMS回折格子で分光し、波長を高速で周期的に変化させて出力する。MEMS回折格子を従来比で約10分の1に小型化し、小型磁石の採用と独自の光学実装技術により、従来の約150分の1にまで小型化(約5㎤)した。仕様は波長分解能約15㎚、掃引波長範囲7~8㎛、掃引時間20ミリ秒以下、最大ピーク出力約150㎽だ。これを産総研開発の駆動システムと組み合わせることで、高速動作と周辺回路の簡略化を実現し、光源として搭載することで分析装置を持ち運び可能なサイズまで小型化できる。

 今後、小型・高感度・高メンテナンス性の次世代火山ガスモニタリングシステムを構築し、多点観測などの実証実験を進める。また、浜松ホトニクスは同開発品と駆動回路や同社の光検出器を組み合わせたモジュール製品を2022年度内に発売し、化学プラントや下水道での有毒ガスの漏えい検出や大気計測など、応用拡大を図っていく考えだ。

NEDOなど バイオマス由来のBRでタイヤ試作に成功

, , , , , ,

2021年9月2日

 新エネルギー・産業技術総合開発機構(NEDO)は、産業技術総合研究所(産総研)、先端素材高速開発技術研究組合(ADMAT)、横浜ゴムと共同で、バイオエタノールからのブタジエンの大量合成、ブタジエンゴム(BR)の合成、自動車用タイヤの試作という一連のプロセスの実証に成功した。 

バイオマス由来のブタジエンゴムで試作したタイヤ
バイオマス由来のブタジエンゴムで試作したタイヤ

 ブタジエンは現在、合成ゴムなどの重要な化学原料として石油から生産されているが、バイオマス(生物資源)からタイヤを生産する技術を確立することで、石油依存を低減しCO2削減と持続可能な原料の調達を促進する。

 NEDOは「超先端材料超高速開発基盤技術プロジェクト(超超PJ)」で計算・プロセス・計測の三位一体による有機・高分子系機能性材料の高速開発に取り組み、バイオエタノールからブタジエンの高速・高効率合成技術を開発した。

 2019年には触媒の配合状態や反応条件に関する大量のデータを取得・解析するハイスループットシステムとデータ駆動型学習、触媒インフォマティクスにより、世界最高のブタジエン収率をもつ触媒システムを開発し、BRの合成にも成功。さらに2020年にはブタジエン収率を1.5倍に高めた。

 今回、産総研が、バイオエタノール処理量が従来比約500倍(1L/時)の大型触媒反応装置を設計・製作し、反応温度やエタノール流量などの反応条件の最適化と生成ブタジエンの捕集方法の改良により、連続反応で約20kgのブタジエンを製造。ADMATが生成ブタジエンを蒸留して高純度化し、横浜ゴムが高純度ブタジエンを重合してゴム化した。これと天然ゴムのみで試作したタイヤは、従来の石油由来ゴムを使用したタイヤと同等の性能を示した。

 今後、超超PJでは成果を実用化するための材料設計プラットフォーム構想を進め、その中のハイスループット触媒開発装置群の構築とデータ蓄積をさらに進める。生産性の向上や他の材料開発への適用などを加速させ、サステイナブル資源の社会実装に挑戦し、カーボンニュートラル、脱炭素社会の実現に貢献する。