出光興産 海水と生体アミンでCO2鉱物化、NEDO事業に

, , , , ,

2022年3月9日

 出光興産、北里大学、東京大学、日本海水の4者はこのほど、新エネルギー・産業技術総合開発機構(NEDO)の研究開発委託事業に、「海水と生体アミンを用いたCO2鉱物化法の研究開発」が採択された。4者は共同で、海水中のカルシウムを利用してCO2を固定化する技術開発を進めている。委託期間は2022~2024年度で、産業技術研究所および琉球大学が再委託機関として参画する。

 同事業は日本海水の水酸化マグネシウム製造プロセスから

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

東京工業大学など、全固体電池の性能を加熱処理で大幅に向上

, , , , ,

2022年2月24日

 東京工業大学の一杉教授はこのほど、東京大学、産業技術総合研究所、山形大学と共同で全固体電池の固体電解質と電極の界面抵抗が水蒸気により増加し、電池性能が低下することを発見。加熱処理だけで性能を大幅に向上させる技術を開発した。

 高速充電と高い安全性が期待される全固体電池は、電極材料が大気中で変質して界面抵抗が増大し、充電時間が長くなる問題がある。一杉教授らは、

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

昭和電工 AIを活用した設計条件の探索、NNモデルを開発

, , , ,

2021年12月3日

 昭和電工は2日、物質・材料研究機構(NIMS)、東京大学と共同で、2000系アルミニウム合金の設計条件と機械特性の相関を高精度で予測するニューラルネットワーク(NN)モデルを開発したと発表した。このモデルを活用することで、これまで困難であったアルミ合金の高温域での強度保持に最適な組成や熱処理条件の探索を迅速化し、合金の開発に要する時間を2分の1~3分の1程度に短縮することが可能になる。

 アルミニウムは幅広い用途で使用されているが、アルミ単独では強度が低いため、一般には銅やマグネシウムなどの元素を添加したアルミ合金として利用される。アルミ合金は、100℃以上の高温保持時に強度が急激に低下するため、用途に応じて、高温下でも強度を維持できる合金の開発が求められている。しかし、元素の種類や合金自体の製造方法など、合金の特性を左右する因子が多く、要求特性を満たすアルミ合金の組成決定には、開発者の経験や知見、評価や分析を重ねる必要があり、開発に長い時間がかかっていた。こうした課題を解決するため、同社は戦略的イノベーション創造プログラム(SIP)に参画。NIMS、東京大学とともに、AIの一種であるNNを活用し、材料開発を加速、より広範囲での最適な合金設計条件の探索を可能とするシステムの開発を進めてきた。

 同開発では、2000系アルミ合金を対象とし、日本アルミニウム協会などの公開データベースから収集した同合金の410種類の設計データを用いて、室温から高温にわたる幅広い温度域での強度を高精度で予測するNNモデルを開発。さらに、NNモデルの構造とパラメータを、レプリカ交換モンテカルロ法を用いたベイズ推定により最適化し、強度予測値の正確さについても評価することが可能となった。

 なお、このNNでは、1万個の条件を2秒という速さで計算できるため、多くの設計因子を短時間かつ網羅的に評価できる。さらに、任意の温度において必要な強度値を入力することで、それを満足する合金を得られる確率を最大化する設計条件を提示する、「逆問題解析ツール」の開発にも成功し、200℃の高温下でも高い強度を維持できるアルミ合金の設計が可能となった。

 同社グループでは、長期ビジョンにおいて、基礎研究の柱の一つとしてAI・計算科学に注力。今回の成果をグループのもつ様々な素材開発に応用して開発を加速し、顧客課題を解決するソリューションを提供していくことで社会の発展に貢献していく。

アルミニウム合金の逆設計

理化学研究所 マイクロ波と光の協働で合成反応を促進

, , , ,

2021年11月26日

 理化学研究所はこのほど、東京大学と京都大学との共同研究グループが光とマイクロ波の協働的な触媒的化学合成反応系の開発に成功したと発表した。

 マイクロ波には、電子レンジに応用されているような局所的・効率的な加熱効果がある。近年、マイクロ波を照射したときにだけ観測される化学反応や反応の加速効果が数多く報告され、加熱効果とは異なる原理による「非熱的マイクロ波効果」の機構解明や応用研究を行う「マイクロ波化学」という新しい研究分野も確立されている。固体表面上の反応に関する機構は解明されつつあるが、有機単分子でのマイクロ波効果についてはほとんど知られていない。

 今回、フェニルアセチレンを光触媒とするジメチルスルホキシドの酸素酸化反応系で、有機分子に対するマイクロ波効果の観測に成功した。まず光照射により、フェニルアセチレンの基底状態S0の電子はS1準位に励起され、速やかに隣のT1準位へ移動する。このT1準位の電子は酸素分子を活性化し、この活性酸素によりジメチルスルホキシドは酸化され、牛乳や穀物などに含まれ健康食品などに使われるジメチルスルホンになる。このT1準位は3つの副準位に分かれている。

 光励起した電子のほとんどは中位のT1(2)準位に入るが、寿命が短いため酸素分子の活性化収率は低い。これらの副準位間のエネルギー差に相当する2.45㎓のマイクロ波を照射することで、電子が長寿命の副準位T1(1)、(3)に移動すれば、酸素分子の活性化収率が上がりジメチルスルホンの収率が上がることが期待される。1気圧の酸素雰囲気下、光量450㎚・30㎽/㎠、50℃、48時間反応させたときの収率は、マイクロ波ありで77%、マイクロ波なしで21%、光なしで0%、触媒なしで4%であった。この反応系では光と触媒が必須であり、マイクロ波が反応効率の向上に大きく影響していることが分かった。

 光・マイクロ波協働効果により低出力のマイクロ波で効率的に光触媒反応を促進させることが可能で、省エネルギー合成法として注目されるマイクロ波化学反応の機構解明や、新たなカーボンニュートラル合成法の開発への貢献が期待される。

デンカ がん治療用ウイルス製剤を発売、東大と共同開発

, , , , ,

2021年11月8日

 デンカはこのほど、東京大学と共に商用製造工程の開発を進めてきたがん治療用ウイルスG47デルタ製剤「デリタクト注」(一般名:テセルパツレブ)について、第一三共が国内での販売を開始したと発表した。デンカは、第一三共から委託を受けて同品を製造し、10月に出荷開始している。

 同品は、がん治療用ウイルスG47デルタ製剤であり、悪性神経膠腫を対象として世界で初めて承認されたがん治療用ウイルス製剤。生きたウイルスそのものを製剤化したものであるため、その製造には、大規模なウイルス培養技術や特殊な試験技術の確立が必要であり、長年にわたりウイルス感染症ワクチンとウイルス検査試薬の開発・製造を行ってきたデンカの技術やノウハウが十分に活用されている。

 デンカは、同品の商用製剤供給を通じて、アンメット・メディカル・ニーズが高い悪性神経膠腫における新たな治療の選択肢を提供することで、医療の発展に貢献する。デンカは、国内医療機関からのニーズに確実に応えて、安定供給を実現するとともに、同品の製造工程開発で得た技術・ノウハウを生かして、ウイルス製剤などの医薬品製造開発受託企業(CDMO)としてのプレゼンス確立・拡大に向けた取り組みを推進する。

JSR 「東京大学稷門賞」を受賞、支援活動を評価

, , ,

2021年10月28日

 JSRはこのほど、東京大学より令和3年度の「東京大学稷門(しょくもん)賞」を受賞したと発表した。同賞は、東大の活動の発展に大きく貢献した個人、法人または団体に対し贈呈されている。同社がこれまで行ってきた研究教育支援・学生の経済的支援などの活動が評価され、受賞に至った。

 なお「稷門」とは中国戦国時代の斉の首都の城門のこと。斉の宣王が学者を厚遇したことにより、斉の都に天下の賢者が集まり、学問が栄えたという故事が同賞の由来になっている。

 JSRは、昨年4月より、東京大学大学院理学系研究科物理学専攻との包括連携を開始。その取り組みを通じ、様々な分野で連携するとともに、最先端フィジックスとケミストリーの融合によるサイエンスの深耕で、同社の企業理念にもあるマテリアルズ・イノベーションを起こし、新たな学理の探求と社会実装に向けた成果を目指している。

 また、包括連携の開始に合わせて、優れた人材の育成を支援するために博士課程学生を対象とした給付型フェローシップも設立。JSRフェローシップが、博士課程の学生に、安心して研究できる環境を提供し、また、将来に対する意欲向上につながることを期待している。

 同社は、今後もこのような取り組みを通して産学協創を推進し、オープンイノベーションや社会貢献に注力していく。

産総研 中鎖トリグリセリドのケトン食で筋力低下を抑制

, , , , , ,

2021年10月12日

 産業技術総合研究所(産総研)は、東京大学とみやぎヘルスイノベーション(宮城県仙台市)と、中鎖トリグリセリドを含むケトン食の摂取によりデュシェンヌ型筋ジストロフィー(DMD)モデルラットの病態が改善することを発見した。

 DMDはジストロフィン遺伝子の変異が原因の遺伝性筋疾患で、全身の筋力が次第に低下する進行性の難病。主な症状は運動機能の低下で、歩行機能の喪失や呼吸・心機能の障害が生活の質(QOL)や寿命に大きく影響する。日本の患者数は3000~4000人と推定され、平均寿命は30~40歳だ。

 薬物療法や遺伝子治療でも効果的な治療法は確立されていない中、最近、ケトン体が筋衛星細胞(幹細胞)の増殖を促進する可能性が報告。ケトン食は体内のケトン体濃度を上昇させ、筋の再生を促進する可能性があるが、古典的ケトン食は炭水化物やタンパク質の含量が少なく、低栄養性筋萎縮による筋力低下が懸念され、DMD患者の食事療法には適さないとされる。

 同研究グループは、体内のケトン体濃度を効率的に高めつつ、低栄養性筋萎縮を誘発しない食事療法の開発を目指し、中鎖トリグリセリドを含み炭水化物やタンパク質を多く含むケトン食を開発。ジストロフィン遺伝子に変異をもつDMDモデルラットに離乳時点から摂取させ3カ月、9カ月齢で筋力などを評価した。

 3カ月齢で筋萎縮と筋壊死が有意に抑制され、9カ月齢で筋線維化と筋力低下が抑制された。摘出した筋の組織学的調査でも、筋萎縮の抑制が確認された。筋萎縮抑制効果は、病態進行初期の筋壊死の抑制によるものと考えられる。また筋の再生をつかさどる筋衛星細胞の増殖の促進も3カ月齢で有意に高く、筋の壊死や線維化の抑制だけでなく、筋衛星細胞による再生促進による病態改善が確認された。

 この知見から、DMDの新たな治療法の開発や病態進行メカニズムの解明が進むと期待される。今後、ケトン食によるDMD治療効果のさらに詳細なメカニズムを明らかにするとともに、ヒトDMD患者に対するケトン食の有効性 について検証を進める予定だ。

 

NEDOなど 世界初、大規模人工光合成で水素を製造

, , , , , , , , ,

2021年9月22日

 新エネルギー・産業技術総合開発機構(NEDO)と人工光合成化学プロセス技術研究組合(ARPChem)はこのほど、東京大学、富士フイルム、TOTO、三菱ケミカル、信州大学、明治大学とともに100㎡規模の太陽光受光型光触媒水分解パネル反応器と水素・酸素ガス分離モジュールから成る光触媒パネル反応システムを開発し、太陽光による水分解で長期間安全かつ安定的にソーラー水素を分離・回収できることを実証した。世界初の実証事例。

 NEDOは、水の光分解で得たソーラー水素とCO2からC2~C4オレフィンを製造する「二酸化炭素原料化基幹化学品製造プロセス技術開発(人工光合成プロジェクト)」で、①光触媒(水の光分解で水素と酸素を製造)、②分離膜(水素・酸素の混合ガスから水素を分離)、③合成触媒(水素とCO2からC2~C4オレフィンを合成)の研究開発に取り組んでおり、今回の成果は①と②に当たる。

 光触媒パネル反応器は、透明ガラス容器にチタン酸ストロンチウム光触媒シートを格納したもので、光触媒を基板上に塗布するだけで製造できる。紫外光で水を分解し、量子収率はほぼ100%。疑似太陽光の連続照射による耐久性試験では、初期の8割以上の活性を2カ月以上(屋外試験で約1年に相当)維持した。この反応器を連結した3㎡のモジュールをプラスチックチューブで連結し、100㎡規模の反応器とした。屋外環境で水素と酸素が2対1の混合ガスを発生。その太陽光エネルギー変換効率は夏期には0.76%であった。

 ガス分離モジュールで水素濃度約94%の透過ガスと、酸素濃度60%以上の残留ガスに分離。天候・季節によらず、水素の回収率は約73%だった。水素濃度4~95%の混合ガスは着火すると爆発するが、1年以上の屋外試験で一度も自然着火・爆発はなかった。爆発リスクの確認のために、光触媒パネル反応器、ガス捕集用配管、ガス分離モジュールに意図的に着火したが、いずれも破損や性能劣化はなかった。

 今後、可視光にも応答するエネルギー変換効率5~10%の光触媒の開発と、光触媒パネルの低コスト化と一層の大規模化、ガス分離プロセスの分離性能とエネルギー効率の向上のための技術開発を進め、実用化を目指す。

 

 

東大など 電性高分子・ドーパント共結晶で高伝導達成

, , , , ,

2021年5月28日

 東京大学と物質・材料研究機構、科学技術振興機構(JST)、産業技術総合研究所(産総研)の共同研究グループはこのほど、独自開発した強力な酸化力をもつラジカル塩ドーパントと高分子半導体により共結晶構造を自発的に形成させ、従来以上の高い結晶性と伝導特性をもつ導電性高分子を開発したと発表した。

 高分子半導体は溶液を塗って乾かすだけで製膜でき、次世代エレクトロニクス材料として注目される。高分子半導体を導電性材料として使うには、ドーピング処理で電荷を注入し、電気伝導特性を向上させる必要がある。

 通常は、高分子半導体と酸化還元反応するドーパント分子を高分子膜に導入するが、ドーパント分子は陰イオンとして高分子膜内部にランダムに残るため結晶性を損ない、伝導特性に影響してしまう。結晶性構造を壊さずにドーパント分子を導入する手法を以前開発したが、ドーパント分子の立体的配置は不明瞭で、そのランダムさが電気伝導特性を制限している可能性があった。

 今回、より酸化力の強いラジカル塩ドーパントを開発。その溶液に高分子半導体の薄膜を浸漬したところドーピング量は非常に多く、X線回折分析により、高分子半導体とドーパント分子1対1による共結晶構造の形成を確認。ドーパント分子の位置を0.5㎚程度の精度で決定した。強力な酸化反応により、ドーパント分子が高分子半導体結晶にあるナノメートルスケールの周期的な空隙に入り、自発的に均質な密度で配列したと考えられる。一般的に通常の高分子膜の構造は乱れているが、今回は薄膜全体に配向性の高い共結晶構造が形成し、電気伝導度が高く白金などの貴金属に匹敵する高い仕事関数を示した。

 さらに、ドーパント分子種の最適化により、大気安定性も向上した。電気伝導特性は共結晶性領域に由来する金属的な伝導が支配的だが、今回の研究により、ミクロな共結晶構造の設計でマクロな電気伝導度の制御が可能であることが示唆された。様々な分子性イオンを充填・配列化した高分子半導体薄膜を大面積で容易に形成できるため、今後様々な機能性電子・イオン材料としての研究が進展することが期待される。

産総研と東大 モビリティ・サービス研究で連携・協力

, , ,

2021年4月20日

 産業技術総合研究所(産総研)と東京大学はこのほど、モビリティ・サービス分野の連携・協力の推進に関する協定を締結した。

 年齢や障害などに関わりなく、すべての人が「いつでも、どこでも」移動できる革新的なモビリティ・サービスの創出と社会実装を促進させることを目指したもの。これにより、移動の制限や不自由によって生じる生活の質(QOL)の低下を防ぎ、誰でも楽しく移動できる社会の実現を目指す。

 パーソナルモビリティから公共交通機関を含めた各種モビリティの要素技術となる生体計測・評価、AI、データ連携に関する研究と、異なるモビリティを切れ目なく連携し、安全・安心・便利なモビリティ・サービスの社会実装に必要なモビリティマネジメントやサービスに関し、研究協力を行う。両者の実験プラットフォームを活用して、研究開発の成果をシームレスに社会実装へとつなげていく考えだ。