NEDOとJST 大学発ベンチャー表彰、受賞者を決定

, , ,

2022年9月13日

 NEDO(新エネルギー・産業技術総合開発機構)と科学技術振興機構(JST)はこのほど、「大学発ベンチャー表彰2022~Award for Academic Startups~」の受賞者を決定した。

 この表彰制度は2014年度に開始され、

このコンテンツを閲覧するにはログインが必要です。お願い . あなたは会員ですか ? 会員について

産総研など 接着剤の剥離挙動を電子顕微鏡で直接観察

, , ,

2021年12月6日

 産業技術総合研究所(産総研)と科学技術振興機構(JST)はこのほど、電子顕微鏡で接着剤の剥離過程をリアルタイムで直接観察することに世界で初めて成功した。破壊に至るまでの、接着剤の極微小な変形・進行現象を明らかにしたことで、破壊メカニズムを解明し、接着接合の耐久性向上に向けた接着剤の高性能化や被着体表面処理の最適化が期待される。

 CO2排出量削減に向け、自動車などの輸送機器の燃費向上のための車体軽量化は必須で、異種材料を適材適所に配置したマルチマテリアル構造設計による軽量化が有効だ。接着接合は生産性とコストの面で優れている。普及には接合部の強度や耐久性の信頼性確保が重要だが、その実証は困難なため、科学的裏付けが必要となる。

 今回、接着接合部の破壊メカニズム究明に向け、破壊現象に伴う極微小な変形現象を観察した。光学顕微鏡や走査型電子顕微鏡(SEM)では1㎛以下の微細変形を観察できないため、より高倍率の透過型電子顕微鏡(TEM)を用いた。電子線が透過するよう、アルミニウム合金とエポキシ系接着剤の接着接合試料から厚さ100㎚程度の薄片試料を切り出し、試料両端を引っ張りながら接着部の破壊挙動を観察した。

 まず接着剤に小さなひずみが発生し、それが微小なき裂となり、さらに接合面に微小の空洞が発生する。その後、微小なき裂が接合部に到達すると接合面に沿って進展し、接合面に発生していた微小の空洞と一体化し破壊に至る。破壊後の被着体表面の所々に接着剤が残っていることから、アルミ表面のわずかな凹凸が破壊挙動に関与していると考えられる。このように、破壊の起点が接着剤内部、接合面、金属層のいずれであるかが明確になり、破壊形式を明らかにすることで、接合部の耐久性向上に有効な接着剤や基材の表面処理法の開発指針の提供が可能になる。

 今後は、接着接合部の破壊現象のリアルタイム観察結果をシミュレーションで再現することで、複雑な接着破壊現象のメカニズム解明を進める。さらに、その知見を基に接着剤の耐久性向上と被着体の表面処理の最適化など、接着接合の信頼性の評価・実証につなげる予定だ。

東京ガス 洋上風力発電の早期実現に向け産学共同研究

, , , , ,

2021年11月1日

 東京ガスと九州大学、ジャパン・リニューアブル・エナジー(JRE)はこのほど、「洋上風力発電の採算性と耐久性の最適設計に資する日本型ウエイクモデルの開発と大型商用風車を活用した精度検証」が、科学技術振興機構(JST)公募の「産学共同(本格型):with/postコロナにおける社会変革への寄与が期待される研究開発課題への支援」に採択されたと発表した。風車ウエイク現象とは、風車ブレードの回転に伴い風車下流で風速の低下や風の乱れが大きくなる現象で、大規模洋上風力発電所の設置・運転において重要となる。ウエイク現象を高精度に再現するシミュレーション手法を構築することで、風車配置の最適化や運転制御の評価を可能にし、発電コストの低減を目指す。九州大学は風洞実験やスーパーコンピュータによる解析と再現シミュレーション、ウエイクモデルの高度化、JREはドップラーライダーによる実機風車のウエイク計測や実機風車の操作データの分析を行う。東京ガスは業務用・産業用向けのエネルギーマネジメントシステムの開発・運用や住宅設備機器制御システムの開発を通じて培ったAI活用技術の知見を生かし、風洞実験・数値シミュレーション・野外計測データへの機械学習の適用(AIモデルの提案)を行う。研究期間は今月1日~2023年3月末までの予定。

ダイセル 新規改質セルロース開発、産学共同研究に採択

, , , ,

2021年10月21日

 ダイセルと金沢大学はこのほど、科学技術振興機構(JST)の研究成果展開事業 研究成果最適展開支援プログラム(A-STEP)産学共同(本格型)の新規採択課題として、「バイオマスプロダクトツリーを実現する新規改質セルロースの開発」が採択されたと発表した。研究期間は今年10月~2023年3月を予定している。

 両者は長年、セルロースを中心に共同研究や人材交流を続けており、2018年には包括連携協定を締結、2019年には「先導科学技術共同研究講座」を設置し、セルロース系の脱ヒ素浄化材の開発研究や、バイオマス由来の脱石油系合成プラスチックの製造を目指した基礎研究に取り組んできた。

 そして、昨年12月には「金沢大学新産学協働研究拠点(仮称)」を設置することで合意。利用の進んでいない森林資源や、農業・水産業の副産物、廃棄物など、一次産業から生じる天然資源を、環境にやさしい次世代化学変換プロセスによって、様々なバイオマス新素材に変換する技術を共同研究し、「バイオマスプロダクトツリー」の実現に向けた取り組みを進めている。

 今回採択された課題は、人類がこれ以上地球に負荷をかけることのない未来社会を目指すバイオマスプロダクトツリー構想を実現するために、木材や綿花などのバイオマス資源から効率的に製造される、成形加工性と海洋分解性に優れた新規改質セルロースを開発すること。

 具体的には、新規改質セルロースの連続製造プロセスのセンシング技術、低コスト・省エネルギー化、ワンウェイ用途のプラスチック製品に対応した成形加工性を実現する物性制御技術などについて研究開発を進めていく。

NEDO 「大学発ベンチャー表彰2021」受賞者決定

, , ,

2021年9月9日

 新エネルギー・産業技術総合開発機構(NEDO)と科学技術振興機構(JST)はこのほど、「大学発ベンチャー表彰2021」の受賞者を決定した。

 大学などの研究開発成果を活用した起業や起業後の挑戦的な取り組み、大学や企業による大学発ベンチャーへの支援の促進を目的として2014年度に開始した制度。今回、38件の応募の中から、大学発ベンチャー六社とその支援大学、支援企業が受賞した。

 受賞名、受賞者と事業内容は、

 ▽文部科学大臣賞はHeartseed/慶應義塾大学/味の素による「iPS細胞による心筋再生医療の実用化研究」

 ▽経済産業大臣賞はリージョナルフィッシュ/京都大学/荏原製作所による「水産物の品種改良とスマート養殖を組み合わせた次世代養殖システムの構築」

 ▽JST理事長賞はオリシロジェノミクス/立教大学による「無細胞系による長鎖環状DNAの連結・増幅技術を用いた各種製品・サービスの提供」

 ▽NEDO理事長賞はRapyuta Robotics/チューリッヒ工科大学/モノフルによる「クラウドロボティクスプラットフォームの開発とロボティクスソリューションの提供」

 ▽日本ベンチャー学会会長賞はマトリクソーム/大阪大学/ニッピによる「細胞外マトリックスタンパク質を用いた細胞培養用基質の研究開発と販売」

 ▽大学発ベンチャー表彰特別賞はRTi‐cast/東北大学/国際航業による「地震時に即時的に津波浸水被害予測を行う世界初のシステムによる津波災害情報配信とシステムの構築・運用」だった。

東大など 電性高分子・ドーパント共結晶で高伝導達成

, , , , ,

2021年5月28日

 東京大学と物質・材料研究機構、科学技術振興機構(JST)、産業技術総合研究所(産総研)の共同研究グループはこのほど、独自開発した強力な酸化力をもつラジカル塩ドーパントと高分子半導体により共結晶構造を自発的に形成させ、従来以上の高い結晶性と伝導特性をもつ導電性高分子を開発したと発表した。

 高分子半導体は溶液を塗って乾かすだけで製膜でき、次世代エレクトロニクス材料として注目される。高分子半導体を導電性材料として使うには、ドーピング処理で電荷を注入し、電気伝導特性を向上させる必要がある。

 通常は、高分子半導体と酸化還元反応するドーパント分子を高分子膜に導入するが、ドーパント分子は陰イオンとして高分子膜内部にランダムに残るため結晶性を損ない、伝導特性に影響してしまう。結晶性構造を壊さずにドーパント分子を導入する手法を以前開発したが、ドーパント分子の立体的配置は不明瞭で、そのランダムさが電気伝導特性を制限している可能性があった。

 今回、より酸化力の強いラジカル塩ドーパントを開発。その溶液に高分子半導体の薄膜を浸漬したところドーピング量は非常に多く、X線回折分析により、高分子半導体とドーパント分子1対1による共結晶構造の形成を確認。ドーパント分子の位置を0.5㎚程度の精度で決定した。強力な酸化反応により、ドーパント分子が高分子半導体結晶にあるナノメートルスケールの周期的な空隙に入り、自発的に均質な密度で配列したと考えられる。一般的に通常の高分子膜の構造は乱れているが、今回は薄膜全体に配向性の高い共結晶構造が形成し、電気伝導度が高く白金などの貴金属に匹敵する高い仕事関数を示した。

 さらに、ドーパント分子種の最適化により、大気安定性も向上した。電気伝導特性は共結晶性領域に由来する金属的な伝導が支配的だが、今回の研究により、ミクロな共結晶構造の設計でマクロな電気伝導度の制御が可能であることが示唆された。様々な分子性イオンを充填・配列化した高分子半導体薄膜を大面積で容易に形成できるため、今後様々な機能性電子・イオン材料としての研究が進展することが期待される。

DIC 産官学連携の接着技術開発プロジェクトに参画

, ,

2020年5月7日

 DICはこのほど、科学技術振興機構(JST)が推進する未来社会創造事業の研究プロジェクト「Society5.0の実現をもたらす革新的接着技術の開発」(CREAプロジェクト)に今年度より参画したと発表した。

 同プロジェクトは、電気自動車(EV)や自動走行車など次世代モビリティの軽量化や部材リサイクルに貢献する、「革新的な接着技術」の研究開発を目的としている。九州大学の田中敬二教授らの研究グループが提案し、2018年度に文部科学省から示された大規模プロジェクト型の技術テーマの1つ。高分子科学、先端計測および数理科学を専門とする研究者と連携企業の連合体が、接着現象に関連する界面の学理からものづくりまで一貫して研究開発を行うもので、2022年には実証実験フェーズへの移行を目指す。

 Society5.0は、仮想と現実の空間を高度に融合させたシステムにより、経済発展と社会的課題の解決を両立する人間中心の社会のことで、第5期科学技術基本計画により、日本のあるべき未来社会の姿として提唱されたもの。その中に自動車産業の変革(CASE:つながる、自動運転、共有、電動)があり、「革新的な接着技術」は、それを実現するための重要な基盤技術の1つである。

 人命に関わるモビリティの接着技術には、強度や耐久性の保証と、それらに基づいた健全性や信頼性が求められる。共同研究では、モビリティの構造接着で重要な異種材料接合の高耐熱・高耐久機能と、廃棄の際に従来以上に容易に解体できる資源リサイクルに適した易解体性を兼備したエポキシ系接着樹脂の開発を目指す。

 DICグループは、新たなモビリティ社会に貢献するリサイクル性を兼備した複合材料の開発を進めることで、循環型社会の実現とSociety5.0の実現に貢献していく。

神戸大など 糖で微生物を制御しポリマー原料生産向上

, , ,

2020年1月24日

PMPE技術による大腸菌を用いたモノづくりのイメージ図
PMPE技術による大腸菌を用いたモノづくりのイメージ

 神戸大学などの研究グループは、糖を使い分けることで微生物の増殖と物質生産を独立してコントロールする「Parallel Metabolic Pathway Engineering(PMPE)」という新しい技術を開発し、ナイロンの前駆体となるムコン酸の生産性向上に成功した。

 神戸大学大学院工学研究科の藤原良介博士後期課程学生(日本学術振興会特別研究員DC1)、田中勉准教授、理化学研究所環境資源科学研究センターの野田修平研究員らの研究グループは、科学技術振興機構(JST)などの助成を受け新技術の開発に取り組んだ。

 同研究では、食糧生産と競合しないリグノセルロース系バイオマスの、主な加水分解物の糖であるグルコースとキシロースに着目。このグルコースをモノづくりに、キシロースを微生物の増殖に使えるような代謝デザインを施した大腸菌を構築した。

 微生物を利用したモノづくりでは、原料が微生物自身の増殖などに利用されるため目的生産物の生産性が低下する一方、増殖を制限すると微生物が弱り全体の生産量が減るという問題がある。これは、通常の微生物では、取り込んだグルコースとキシロースを1つの代謝系で代謝し、目的物質を生産すると同時に微生物が生きるために使用するため。

 そこで、PMPE技術では、微生物の代謝を2つに分けて糖代謝を独立させることにより、グルコースは全て目的物質の生産に、キシロースは微生物の生育・維持のために使われるようにした。グルコースは生育・維持のためには一切使われないため、収率を大きく向上させる。

 同研究では、改変した大腸菌にムコン酸生産経路を導入し、グルコースとキシロースからムコン酸生産を行い、最終的にムコン酸を4.26g/ℓ生産することに成功した。その収率(理論上の最大収量に対する実収量)は世界最高値となる、1gのグルコース当り0.31gとなった。

 さらに、PMPE技術の他の目的生産物への応用を検討した結果、芳香族化合物であり必須アミノ酸でもあるフェニルアラニンや、食品や医薬品の添加剤として用いられる1,2‐プロパンジオールの生産性を向上することにも成功。PMPE技術が様々な物質の生産性・収率の向上に有効であり、汎用性の高い技術であることを示した。

 糖を使い分けさせることで微生物の代謝を制御するPMPE技術により、さまざまな糖類が混在する実バイオマスの有効利用にも大きく貢献できると考えられている。

東大など 金属性プラスチック実現、イオンで電子を制御

, , , , ,

2019年9月10日

 東京大学と科学技術振興機構(JST)、産業技術総合研究所(産総研)はこのほど、世界で初めてイオン交換が半導体プラスチックでも可能であることを明らかにしたと発表した。

 イオン交換は古くから水の精製、タンパク質の分離精製、工業用排水処理などに応用されている。今回の研究では、極めて普遍的なイオン交換を使い、半導体プラスチックの電子状態を制御する革新的な原理を明らかにした。また、この原理を利用して、半導体プラスチックの電子状態を精密に制御し、金属的な性質を示すプラスチックの実現にも成功した。

 半導体中の電子の数やエネルギーは、半導体の結晶の中に少量の不純物(ドーパント)を添加することで制御することができる。不純物ドーピングはエレクトロニクスデバイスを支える最も重要な半導体技術で、半導体プラスチックにも適用されており、電気が流れるプラスチックである導電性高分子は、さまざまな電極材料や機能性コーティング剤として産業応用が拡大されつつある。

 しかし、ドーパント分子は大気中の水や酸素と反応して、ドーパントとしての機能が簡単に失われてしまうため、この酸化還元反応の制約を乗り越えることが望まれていた。

 東京大学大学院新領域創成科学研究科の山下侑特任研究員、竹谷純一教授(産総研・東大先端オペランド計測技術オープンイノベーションラボラトリ研究員など兼務)、渡邉峻一郎特任准教授(JST戦略的創造研究推進事業研究員など兼務)の研究グループは、これまで半導体プラスチックとドーパント分子の二分子系で行われていたドーピング手法に対し、新たにイオンを添加することで、従来よりも圧倒的に高い伝導性をもつ導電性高分子の開発に成功した。

 さらに適切なイオンを選定することで、イオン変換効率がほぼ100%になること、ドーピング量が増大することも明らかにした。このように高いドーピング量をもつ半導体は、金属のような電気抵抗の温度依存性を示すことも分かった。

 イオンは低い電圧で大量の電荷を駆動・蓄積でき、他の化学種との高い反応性をもつ。電子もイオンも電荷を運ぶ媒体であるため、両方の特徴を生かしたイオントロニクスの研究が盛んに行われているが、今回の研究で実現した金属性プラスチック内のイオン交換反応により、イオントロニクスデバイスの実現を大きく前進させることが期待されている。

NEDO 「イノベーション・ジャパン2019」開催

, ,

2019年8月27日

 新エネルギー・産業技術総合開発機構(NEDO)は、科学技術振興機構(JST)と今月29~30日に、東京都江東区の東京ビッグサイト青海展示棟Bホールで、「イノベーション・ジャパン2019~大学見本市&ビジネスマッチング~」を開催する。

 今年で16回目を迎える「イノベーション・ジャパン」は、大学や公的研究機関、ベンチャー・中小企業などから創出された研究成果の社会還元・技術移転の促進や、実用化に向けた産学連携のマッチング支援を目的に開催している。

 ベンチャー・中小企業、大学などから500を超える研究成果や開発技術を、展示・プレゼンテーション・セミナーなどで発信する。近年、重要性が高まるオープンイノベーションの取り組みとして、産学マッチングとビジネスマッチングを促進する国内最大規模の総合イベントとなっている。

 NEDOエリアでは、ベンチャーなどのビジネスマッチングを中心とし、NEDOが支援する注目の研究開発型ベンチャーや中小企業など約100者が最新技術を展示するとともに、マッチングエリアを設け、情報交換や商談の機会を提供する。

 出展分野はエネルギー・環境、IoT・電子・AI、ものづくり、材料・ナノテクノロジー、医療・ヘルスケア・バイオ。ベンチャー企業などの産学連携事例に焦点を当てたセミナーを30日に開催。オープンイノベーション・ベンチャー創造協議会(JOIC)によるイベントも併催する。

 研究開発成果を発表するプレゼンテーションエリアと、研究開発テーマについての今後の事業展開を発表するピッチエリアの2つの特設会場を開設。NEDOブースでは、ベンチャー・中小企業などのシーズ段階から事業化まで一貫した支援体制をもつNEDOの支援制度について紹介するほか、事業の活用などを相談できるコーナーを設け、スタッフが対応する。NEDO公募事業メニューなども紹介する。なお、公式サイトで来場事前登録を行っている。