日本ゼオン AIを活用し物性を予測、機能性材料の開発加速

, , , , , ,

2021年9月1日

 日本ゼオンはこのほど、2017年から参画している新エネルギー・産業技術総合開発機構(NEDO)の「超先端材料超高速開発基盤技術プロジェクト」を通じて、AIにより材料の構造画像を生成し、高速・高精度で物性の予測を可能とする技術を共同開発したと発表した。なお、同プロジェクトには同社のほか、先端素材高速開発技術研究組合(ADMAT)、産業技術総合研究所(産総研)が参画している。

 昨今、材料開発のさらなる高度化・高速化の要求が高まり、ディープラーニング(深層学習)などの情報処理技術を利活用する動きが活発化している。これは、様々な材料データをコンピュータに学習させることで、高性能な新しい材料の提案を可能とするAI技術で、人の勘や経験に頼る従来の材料開発を高度化することができる。しかし、コンピュータ上で扱える材料は構造が定義できる低分子化合物や周期構造をもつ金属、無機化合物に限定されることが大きな課題だった。

 こうした背景の下、同プロジェクトではカーボンナノチューブ(CNT)をはじめとする機能性材料開発の高速化を目指し、データ駆動を活用した研究を推進。3者は共同で、より汎用性の高い材料へディープラーニングを適用する手法を開発した。

 今回の技術では、まず複雑な構造をもつCNT膜の構造画像と物性をAIに学習させる。その上で、種類の異なるCNTを任意の配合で混合した様々なCNT膜の構造画像をコンピュータ上で生成することで、その物性の高精度な予測を可能にした。この技術は、従来のAIでは適応できなかった複雑な構造をもつ材料の組成選定・加工・評価といった一連の実験作業をコンピュータ上で高速・高精度に再現(仮想実験)することを可能にするもので、材料開発のさらなる加速化が期待できる。

 日本ゼオンは、今後も同プロジェクトを通じ、CNTをはじめとするナノ材料と高分子材料との複合材料を対象としたAI開発技術に取り組むとともに、幅広い材料へ適用可能な技術開発につなげ、新技術と新材料開発の可能性拡大に貢献していく。

産総研など 緊急事態宣言下の住宅街のCO2排出量変化

, , , , , , ,

2021年8月31日

 産業技術総合研究所(産総研)と国立環境研究所、明星大学はこのほど、東海大学代々木キャンパス(東京都渋谷区)内の観測タワー上での大気組成の高精度観測に基づき、新型コロナウイルス感染拡大に伴う2020年4~5月の緊急事態宣言期間の代々木街区のCO2排出を排出源別に評価した。CO2排出総量は例年比で約20%低下。自動車などの石油消費が約40%減少した一方、外出自粛の影響で都市ガス消費は約20%増加していた。

 産総研と防衛大学校は2012年から同観測タワーで大気中のCO2とO2の高精度濃度観測行っており、CO2排出とO2消費の交換比(OR)を利用したCO2排出量の排出源別評価手法を開発してきた。ORは排出源ごとに異なり、石油消費は1.44、天然ガス(都市ガス)消費1.95、石炭消費1.17、陸上植物活動1.1、人間呼吸は約1.2と推定される。

 渦相関法(濃度と風速から解析)によるCO2排出総量と、傾度法(濃度の高度勾配と乱流拡散係数から算出)によるO2消費総量/CO2排出総量比(OR)、排出源ごとのORから、排出源の分離を行った。人間呼吸と植生の寄与は、人口統計や植生面積を考慮して別途評価し、石炭消費は考慮していない。

 緊急事態宣言期間のCO2排出量は、例年に比べ日中に顕著な減少傾向を示し、夜間は同等であった。これは、代々木街区近郊の自動車交通量の統計データ、外出自粛による居住人口の変化を考慮した都市気候モデルによる都市ガス消費量の推定結果、とおおむね整合した。また、国立環境研究所が同時に観測しているCOとCO2の関係も、自動車由来のCO2排出量の減少を支持する結果であった。

 今回の手法は、ゼロエミッションに向けたエネルギー消費構造の変化を評価する有効なツールになり得る一方、複数の高度な観測技術を組み合わせた解析であるため、他地域での評価には制約がある。今後は、観測手法の簡易化を目指し、局所大気輸送モデルを組み合わせた解析により他地点の限定的な観測データも活用し、より広域のCO2排出源評価への応用を進めていく考えだ。

 

産総研 固体酸化物形燃料電池で最高レベルの発電性能

, , ,

2021年8月23日

 産業技術総合研究所(産総研)のゼロエミッション国際共同研究センターはこのほど、ナノ構造制御した高性能空気極を開発し、固体酸化物形燃料電池(SOFC)単セルで世界最高レベルの出力密度を達成した。「固体酸化物エネルギー変換先端技術コンソーシアム(ASEC)」でプライマリ会員の大阪ガス、京セラ、デンソー、森村SOFCテクノロジー、三浦工業と産総研による「革新セルスタックプロジェクト」の取り組み。

 SOFCは他の燃料電池より発電効率が高くすでに市販化されているが、システムの大きさや製造コストが普及への課題だ。セルの出力密度向上を目的に、電極反応抵抗の小さな空気極の開発に取り組み、今回パルスレーザー堆積(PLD)法で自己組織化ナノ複合空気極と、その性能を十分に発揮するためのナノ柱状多孔質集電層、ナノ複合化燃料極機能層を開発・搭載した。

 従来の空気極材料には単一または複数の金属酸化物との混合物である多孔質焼成体が使われ、その粒子径は数百㎚から1㎛程度である。今回PLD法により、二種類の材料が太さ数10㎚程度の柱状構造の中に各々幅数㎚の縞状で存在する交互配置構造の作製に成功した。燃料極機能層は、水素の酸化反応を促進するために燃料極支持体と電解質の間にあり、サブミクロン程度のセラミック混合物が使われる。

 今回、噴霧熱分解法により、10㎚程度の一次粒子を凝集、二次粒子化した粉末を作製。セル全体の抵抗低減と緻密な薄膜電解質の形成を向上させる。空気極集電層は電極反応のための電子を供給する層で、通常1㎛程度の粒子からなる。今回PLD法で作ったナノ柱状多孔質集電層は、数十㎚程度の領域ごとに電気的接続をし、電極全体の効率を上げた。これらの新規材料を搭載した単セルは、電極反応抵抗率0.01Ω/㎠、700℃での出力密度4.5W/?以上、SOFCセルの一般的な作動電圧0・8Ⅴでの電流密度三A/㎠で、従来の一般的なセルの6~10倍の電流値を実現。これによりセル枚数は10分の1程度にでき、コストの大幅削減とシステムの小型化が見込まれる。

 6月から開始したASEC第2期では、構造安定化による電極の長寿命・高信頼性化や、量産化への適応性検討などを進めるとともに、これら部材を搭載する技術の早期実用化を図る。

産総研 透明電極の結晶化抑え透明有機デバイス高性能化

, ,

2021年8月5日

 産業技術総合研究所(産総研)はこのほど、透明酸化物電極(透明電極)を使った透明有機デバイスの性能が透明電極の結晶化を阻害することで大幅に向上することを見出だした。窓のように透明性が要求される場所へも透明有機デバイス搭載が可能となり、用途が大きく広がる。

 有機デバイスは形状がフレキシブルであるため、皮膚などの複雑な形状の表面へも設置できる電子デバイスとして注目される一方、非透明であるため透明性やデザイン性が求められる用途には適さない。透明電極と組み合わせることで透明化できるが、透明電極を形成する過程でデバイスの電気特性が大幅に低下してしまうという問題があった。透明電極形成時に生じるプラズマや高エネルギー粒子によるデバイスへのダメージ低減に着目し、スパッタリング製膜法も開発されたが、本来のデバイス性能には届いていない。

 一方、透明電極の結晶化度が高いほど電気伝導性が高く性能向上に有利と予測し、透明電極/電荷注入層/有機薄膜/下部電極からなる透明有機デバイスの透明電極の結晶化を試みたが、逆にデバイス性能は低下。解析の結果、結晶化した透明電極の場合、電荷注入層/有機薄膜界面にギャップが形成され、デバイス内の電気伝導を阻害することが判明した。

 結晶化した透明電極では、透明電極内の応力が緩和する際に膜が変形し、膜面方向に微小な変位(位置のずれ)が生じ、電荷注入層下面と有機薄膜の上面が形状的に合致しなくなるので、電荷注入層/有機薄膜の界面に微細なギャップが形成されることが明らかとなった。

 一般に、酸化物薄膜の膜内応力は膜の結晶性を下げると低減することから、透明電極製膜中に結晶化を阻害する微量のガスを導入したところ、膜内応力は約4分の1に低減。これで有機電界発光デバイスを作製したところギャップは無くなり、電流/電圧特性と発光特性は大幅に改善した。

 今後、透明電極内の応力のさらなる低減と透明有機デバイスの高性能化に取り組むとともに、長期間使用時の耐久性など実用面の検討を行い、実用化に向けた研究を引き続き行っていく。

 

産総研など 次世代有機LEDの発光効率低下の原因解明

, , , , , ,

2021年7月28日

 産業技術総合研究所(産総研)、筑波大学、高エネルギー加速器研究機構、九州大学の研究チームはこのほど、次世代有機LED材料の電子の動きを直接観察することに成功し、発光効率低下の原因を解明した。

 有機LED(OLED)は、外部からの電気刺激により励起状態となった分子中の電子が元の状態(基底状態)に戻る際に発する光を利用したデバイスだ。しかし、最も多く生成する励起三重項状態は発光しにくい性質があり、この状態をどのように発光させるかが大きな課題である。

 OLED用発光材料の1つである熱活性型遅延蛍光(TADF)材料は、巧みな分子設計によりレアメタルを使用することなく、励起三重項状態を熱エネルギーによって励起一重項状態に遷移させることが可能で、内部量子効率(励起電子数に対する生成光子数)は理論限界である100%に達する。薄膜構造の制御により外部量子効率(材料内生成光子数に対する外部放出光子数)の向上が見込まれることから、単一膜デバイスが注目されているが、単一膜の励起三重項状態が発光しにくい理由は解明されていない。TADF材料の発光は、励起状態の電子の動きに支配される。

 今回、改良した時間分解光電子顕微鏡を使い、TADF薄膜のTADF発光過程の電子の動きを直接観察することが可能になり、励起電子の生成・発光による失活・無輻射失活過程までの電子の動きを捉えることに成功。その結果、励起電子により生成した励起子が自発的に解離して長寿命の電子を生成し、TADFの発光効率を低下させていることを突き止めた。この励起子解離の過程と量を捉えられる観察手法は、TADF薄膜の光物性の系統的な解明に資するものだ。これにより、まだ十分な理解が得られていないTADF発光過程の詳細が明らかになり、TADF薄膜材料を利用した超高効率OLEDの開発推進が期待される。

 

産総研と豊実精工 セラミックコートでクロムメッキ代替

, , , ,

2021年7月20日

 産業技術総合研究所(産総研)と豊実精工(岐阜県加茂郡)はこのほど、常温衝撃固化現象を活用したエアロゾルデポジション(AD)法を最適化し、3次元的表面に防錆性と耐摩耗性を付与できる低環境負荷の常温セラミックコーティング技術を共同開発した。

 機械部品の防錆加工に汎用される硬質クロムめっきは、硬度と処理コストに優れるが、特定有害物質の六価クロムを使用し、欧州のRoHS指令など多くの規制を受けるため、機械的耐久性や防錆性に優れた六価クロムフリーの表面処理技術が求められている。代替技術の三価クロムめっきや溶射法は、密着性や耐摩耗性、膜厚制御性などが劣っている。

 今回AD法を活用し、平面と3次元形状の鉄系部品表面への高い防錆性・耐摩耗性の量産レベルのセラミックコーティング「ERIN処理」技術を開発。ドライコーティング非溶液プロセスで、溶射法のようにセラミック微粒子を溶かさないため、凝固収縮に伴うクラックやポアが発生せず、高い硬度と密着力をもつセラミック膜を形成し、高い防錆性や耐摩耗性が期待できる。

 基材に吹き付けられたセラミック微粒子は、衝撃でナノサイズの微細結晶片に破砕し、流動、再結合して強固な密着力と機械強度をもち、厚みのある緻密なセラミック膜を形成。成膜速度は速く常温処理であるため、熱に弱いプラスチックなど様々な基材へも適用できる。ピンホールやクラックの抑制にはセラミック粒子が均質なナノスケールの微細結晶片に破砕されることが重要で、基材の表面粗さ(凹凸形状)、セラミックコーティングの膜厚、基材の硬度、吹き付け角度の設定により、複雑な3次元構造体表面にも剥離のない均質な被膜を形成することを実証した。

 今後、豊実精工は防錆性や耐摩耗性が要求される小型精密機構部品などの年内の製造販売を目指すとともに、六価クロムフリーの機能めっき代替技術としての事業展開を図る。

 産総研は、原料粉末の合成や高度化などで同技術の量産性を向上し、低コスト化や大型構造物への適用拡大を検討するとともに、欠陥のない緻密3次元セラミックコーティング技術として、電子部品やエネルギー関連部材用途への応用展開を進めていく。

 

NEDOなど カルボン酸合成技術開発、ギ酸を有効利用

, , , ,

2021年6月29日

 新エネルギー・産業技術総合開発機構(NEDO)などはこのほど、計算・プロセス・計測の三位一体による技術開発スキームを活用し、高効率な触媒を使い、ギ酸とアルケンから様々な化学品の基幹原料となるカルボン酸を合成する技術を開発したと発表した。

 NEDOは超先端材料超高速開発基盤技術プロジェクトに取り組み、革新的な機能性材料の創製・開発の加速化を目指している。今回、産業技術総合研究所(産総研)、先端素材高速開発技術研究組合(ADMAT)、日本触媒と共同で、安全で環境に優しいカルボン酸の合成技術を開発した。

 カルボン酸は、ポリエステル、ポリメタクリル酸メチル(PMMA)、高吸水性樹脂などの高分子材料、医薬品、農薬などの有用化学品の基幹原料となるため工業的な応用も期待されている。しかし、これまでに報告されている例では、高圧条件や有毒で爆発性の高い一酸化炭素(CO)を使用することや、触媒以外にヨウ化メチル(CH3I)など環境負荷の高い複数の添加剤を大量に使用することが問題となっていた。

 今回開発した技術は、従来のような高圧条件を必要とせず、有毒で爆発性の高いCOガスや環境負荷の大きい添加剤を使用しない。さらに、ギ酸はCO2と水素から高効率に合成できるので、CO2を利用したクリーンな原料とみなすこともできる。この技術が実用化されれば、CO2を炭素資源として利用するカーボンリサイクル社会実現への貢献が期待できる。

 今後、触媒系の反応効率をさらに向上させるために、ロボティクスを活用したハイスループット実験により触媒のさらなる改良を迅速かつ効率的に実施し、最終的には化学品の連続生産技術であるフロー合成に使用できる固定化触媒の高速開発を目指す。

 なお日本触媒は、新化学技術推進協会(JACI)がオンラインで開催する「第10回JACI/GSCシンポジウム」(6月28~29日)で、研究成果の詳細を発表する予定。

 

産総研 湿度変化で発電する「湿度変動電池」を開発

, , ,

2021年6月24日

 産業技術総合研究所(産総研)はこのほど、空気中の湿度変化により発電する「湿度変動電池」を開発した。

 昼夜の湿度差で㎃レベルの電流を連続して取り出すことができ、IoT機器などの自立型極低電力電源としての応用が期待される。様々な電子機器の普及と、IoT(モノをインターネットに接続する)技術の進展により電子機器の数が増加する中、電源供給方法が問題となる。膨大な数の電子機器に対して、電源配線、定期的な充電や電池交換は、物理的スペースや労力の面で現実的ではない。

 小型電子機器の自立電源として熱電素子、太陽光発電、振動発電など環境中の微小エネルギーを使う環境発電技術の開発が行われているが、熱、光、振動などが存在する場所は限られることから、「どこでも発電できる」技術とは言い難い。どこにでも存在する湿度(水蒸気)を利用する場合、既存の発電素子で得られる電流は㎁、㎂レベルで実用的ではない。

 今回、潮解性無機塩水溶液の吸湿作用と塩分濃度差発電を組み合わせた、新しい原理の発電方式を開発。イオン交換膜で隔てた開放槽と閉鎖槽に、水と潮解性のあるリチウム塩からなる電解液を封入。低湿度環境では開放槽から水分が蒸発して濃度が上昇し、閉鎖槽との濃度差で電極間に電圧が発生する。

 高湿度環境では開放槽内の水溶液が空気中の水分を吸収して濃度が低下し逆の濃度差が発生し、逆向きの電圧が発生する。この湿度変動電池を恒温恒湿槽内に入れ、湿度を30%と90%に繰り返し変化させたところ、湿度30%のときには22~25㎷、湿度90%のときにはマイナス17㎷程度の電圧が発生した。最大電圧のときの出力は最大30㎼であった。短絡電流は5㎃で、1㎃以上の電流を1時間以上継続して出力できた。

 また湿度20~30%の密閉容器に湿度変動電池を入れ、電圧が一定したところで10㎼以下で駆動する低消費電力モーター接続すると、溜まったエネルギーによりモーターは2時間半以上駆動した。昼夜の温度変化などで湿度は数十%変動するため、比較的大きなエネルギーを長時間安定して取り出すことができ、「置いておくだけでどこでも発電できる」新たな再生可能エネルギーと言える。

 今後、さらなる出力向上や長期間使用時の耐久性など、実用化に向けた研究を行っていく。

産総研 有機シラン合成用高効率ロジウム錯体触媒を開発

, ,

2021年6月9日

 産業技術総合研究所(産総研)はこのほど、新エネルギー・産業技術総合開発機構(NEDO)が進める「有機ケイ素機能性化学品製造プロセス技術開発」について、産総研が有機ケイ素原料を効率的に合成できるロジウム錯体触媒を開発したと発表した。副生成物の発生が少なく精製工程が簡略化でき、シランカップリング剤の基幹原料を収率99%以上で合成できる。

 シランカップリング剤は無機材料と有機材料を結合する性質をもち、高機能複合材料に広く利用されている。様々なシランカップリング剤を安価に供給することで、エコタイヤや半導体封止樹脂、FRP(繊維強化プラスチック)などの高機能複合材料の低価格化が期待できる。多くのシランカップリング剤の基幹物質となるクロロプロピルシランは、白金やイリジウム錯体触媒を使って、ヒドロシランと塩化アリルの反応により合成されるが、収率は70~80%程度で、複数の副生成物が生成する。

 今回、触媒構造と生成物の関係に着目。新しい触媒はロジウム金属とフッ素を含み、2つのリン原子がロジウム金属に結合する配位子を組み合わせた。副生成物を生成する触媒構造は不安定なことから、主成分を生成する安定な触媒構造に変化するため、副生成物の生成反応が大幅に抑制される。微量のロジウム錯体でも、目的のクロロプロピルシランを実験室レベルで99%以上の収率で単一合成できた。触媒量5㏙の場合、触媒回転数(触媒が不活性化するまでの触媒1分子当たりの反応回数)は14万回に達し、工業触媒として十分な耐久性をもつことが確認された。

 産総研は引き続き同事業でシランカップリング剤反応のスケールアップ実験を行い、工業的な実施可能性を検証する。また触媒性能の解析を進めて、高機能で安価な有機ケイ素材料の提供を目指す。

NEDOと産総研 AI材料設計向け仮想実験環境を構築

, , , , ,

2021年6月3日

 新エネルギー・産業技術総合開発機構(NEDO)と産業技術総合研究所(産総研)はこのほど、物性計算シミュレーターとAI技術を連携させ、材料の電気伝導度計測を計算機上で再現する基盤技術を開発したと発表した。これにより生成した大量の材料データを深層学習させることで、望みの電気特性をもつ材料の組成・構造の予測・設計につながることが期待される。

 NEDOは各種有機・高分子系機能性材料開発の試作回数・開発期間を従来の20分の1に削減・短縮する「革新的機能性材料の開発を支援するためのシミュレーター」を、産総研と先端素材高速開発技術研究組合と共同で開発した。材料の組成・構造から物性・機能を予測(順問題予測)するには正確なビッグデータが必要だが、そのための計算シミュレーションでは、実材料のサイズが計算容量を大きく上回ることが問題であった。

 今回、第一原理電気伝導計算機能(量子方程式で物質構造から電子状態を求める)とAIの深層学習法を連携させ、順問題予測を正確に行い、電気特性に関する仮想材料実験を計算機上で行うための技術を開発した。材料を構成する全原子の相対的位置情報を局所的情報に単純化して記述子とし、様々な構造・組成に対する電気伝導度の第一原理計算シミュレーションで得たデータを深層学習に使う。大きなサイズ領域の記述子を構築できるため、計算シミュレーションの計算機性能の制限を受けず、高い精度で予測できることを検証できた。

 この仮想実験により、材料の組成・構造の数値情報と電気的性質が明瞭に関連付いた高精度で、また実際の実験では得ることが難しいデータを大量に生成できる。そしてAIを利用することで、目的の機能・性質を実現する材料の組成・構造の予測(逆問題予測)が可能になる。

 今後、計算機上での仮想実験で、実際の実験や材料試作に応じた大量のデータを系統的かつ網羅的に生成し、電気伝導物性(材料機能)から材料組成・構造を予測する逆問題予測手法の開発につなげていく考えだ。