ダイセル 自律型生産システムを開発、劇的なコストダウン

, , ,

2020年8月20日

 ダイセルは19日、「ダイセル式生産革新手法」を東京大学と共同で開発した人工知能(AI)によって進化させた「自律型生産システム」を開発したと発表した。

 同システムは、PCM(最適運転条件導出システム)とAPS(高度予知予測システム)の2種類のアプリケーションで構成。化学などプロセス型のモノづくり現場で取得したデータから日々学習を重ねたAIを搭載し、現場作業者を支援する。

 搭載されたAIは、過去に蓄積してきた運転ノウハウを活用するだけでなく、日々の運転の中からも新たなノウハウを自動で抽出していく。「自律型生産システム」によって生産の最適解が求められ、製造コストの劇的な削減につながり、同社の試算では年間100億円程度のコストダウンが可能としている。またAIの活用によって、2000年に完成させた従来の「ダイセル式生産革新手法」の心臓部であったノウハウ顕在化にかかる労力が大幅に低減し、導入の難易度が改善される。

 同社はすでに、「自律型生産システム」の日本国内の生産拠点への展開を開始。また、従来から行ってきた定量的な数値データに基づいた通常の運転に加え、音声や画像などの定性的なデータをも活用し、プラント運転の立ち上げ、停止など、非定常時の運転標準化を進める研究にも着手している。

 一方、「自律型生産システム」は、1つの企業での単一製品の生産の最適化だけでなく、関連する前後の企業・工程にまたがって応用でき、企業の枠を超えたサプライチェーン全体の最適化を実現する。現在、生産現場にAIを導入する一般的な取り組みは、ほとんどが個々の計器やセンサーなどの故障検知や、単一製品の品質予測など、効率化の手段の1つでしかない。しかし同システムは、モノづくりの一連の流れを標準化した「ダイセル式生産革新手法」を用いて開発しており、広範囲で生産を最適化できる。

 同社は将来的に、企業の枠を超えて、原料から最終製品に至るまでのサプライチェーン全体の最適化を目指す。そして究極的には、1つのサプライチェーンを仮想的な会社と捉え、製品の調達、生産、販売といった機能や設備を一体で管理・経営する「バーチャルカンパニー」の考え方に基づいた、効率的・即応的な市場ごとの資産コントロール体制の確立を目指していく考えだ。

:「自律型生産システム」の概要
「自律型生産システム」の概要

 

東大と三菱ケミカル サーキュラーエコノミーの実現に向け協働

, , ,

2020年8月17日

 東京大学と三菱ケミカルはこのほど、サーキュラーエコノミーの実現に向け協働していくことで合意したと発表した。

 東大の未来ビジョン研究センターが8月1日付で新設した「グローバル・コモンズ・センター(CCC)」の活動に対し、三菱ケミカルが寄附を行うとともに、資源の循環・有効活用の観点で素材産業が目指すべきビジネスモデルなどについて、CCCと三菱ケミカルとで共同研究を開始する。なお、CCCのダイレクターである石井菜穂子氏は、三菱ケミカルのシニア・エグゼクティブ・フェローに就任した。

 グローバル・コモンズとは人類の持続的発展の共通基盤である地球環境システムのことを指す。CCCでは、地球環境システムの持続可能性を確保するため、社会・経済システムの根本的転換のモデルと道筋を科学的に示すことを目標としている。また、企業などと連携しながら、転換の具体的なあり様と実現経路を研究し、その実現を国際的な連携の中で促すことを目指す。

 三菱ケミカルは今年4月に「サーキュラーエコノミー推進部」を設置。同部のイニシアティブにより、グローバルな視点・規模で、事業部門の枠を超え、サーキュラーエコノミーに関連するソリューションの提案と事業化を推進し、取引先、アカデミアやスタートアップなどとの連携も積極的に進めている。

 三菱ケミカルは、豊かで持続可能な社会を目指し、その基盤である安定した地球環境を保全するというCCCのミッションに賛同し、その活動を支援することを決定。同時に、両者はCCCの活動の一環として、資源の循環・有効活用が、社会に幅広い素材を提供する化学産業のビジネスモデルとしてどのようにあるべきかなどにつき、共同研究を行うべく協議をしている。

 両者は、これらの活動を通じ、それぞれの立場から、持続可能な社会・経済システムの構築に向け貢献していく。

DNPと東京大学 スキンディスプレイのフルカラー化に成功

, , , , ,

2020年7月16日

 大日本印刷(DNP)と東京大学の染谷隆夫教授の研究チームは、独自の伸縮性ハイブリッド電子実装技術を進化させ、薄型で伸縮自在なフルカラーのスキンディスプレイと駆動・通信回路および電源を一体化した表示デバイスの製造に成功した。

 薄型で伸縮自在なフルカラースキンディスプレイ。
薄型で伸縮自在なフルカラースキンディスプレイ。

 同装置は、皮膚上に貼り付けたディスプレイに外部から送られた画像メッセージを表示できるコミュニケーションシステム。人に優しいスキンエレクトロニクスによって、スマートフォンやタブレット端末よりも情報への利用しやすさが大幅に向上し、子どもから高齢者まで、全世代のQOL向上への貢献が期待される。

 ウィズコロナ・アフターコロナの社会では、距離を隔てた状況でのコミュニケーションのあり方が重要になる。相手を身近に感じる効果を期待し、体表に近いところで情報を見たり、センシングしたりできる技術として、スキンセンサーやスキンディスプレイの開発が進められている。

 今回の研究のポイントとして、①曲面形状に追従できる伸縮性ハイブリッド電子実装技術で使用できる部品の選択肢が広がり実用化に目途。スキンディスプレイの表現力を高めるフルカラー化に成功した。②配線の信頼性を向上し、駆動・通信回路や電源も一体化したことで、様々なものに簡易に貼り付け可能。③遠隔コミュニケーションでの感情伝達を補う効果として、今までにない姿の応援メッセージを送るなど、情報伝達の利便性を発揮できる、などが挙げられる。

 両者は今後、これらの体表面に近いところで表示するセンシングデバイスのコミュニケ―ションに与える効果について検証する研究も継続。またDNPは、間もなくスキンエレクトロニクスの実用化検証を開始する予定だ。

日板硝子 抗ウイルスガラス「ウイルスクリーン」簡易衝立キットを開発

, , , , , ,

2020年7月10日

 日本板硝子はこのほど、光触媒技術を活用した抗ウイルスガラス「ウイルスクリーン」を使った簡易衝立キットを開発したと発表した。

 ウイルスクリーン簡易衝立キット
ウイルスクリーン簡易衝立キット

 「ウイルスクリーン」は銅系化合物と酸化チタン光触媒を組み合わせた抗ウイルスガラス製品で、ガラスに付着したウイルスの活性を低減させる。商業施設のレジカウンターなどでの利用を想定した組み立て式の簡易衝立キットで、サイズは2種類、9月ごろ発売の予定。「ウイルスクリーン」は「抗ウイルス」が求められる病院や公共施設などへ提供してきたが、「新しい生活様式」では商業施設、ホテル、幼稚園、工場など様々な施設でもウイルス対策が求められている。

 今回発売の「簡易衝立キット」は、レジカウンターなどでの飛沫感染防止を想定し、客側に抗ウイルス膜、店員側に飛散防止フィルムを貼り付けたもの。抗ウイルス膜は、銅系化合物(抗菌・抗ウイルス効果)を酸化チタン光触媒膜(有機物の分解)にスパッタリングした複合膜。銅系化合物の抗ウイルス効果が弱まっても、光触媒機能により効果が回復する。

 また光触媒は、蛍光灯やLED照明対応の「可視光応答型」である。ものに付着した細菌やウイルスは一般的に12~24時間生存すると言わるが、「ウイルスクリーン」は、ガラス面に付着したウイルスを室内照明下約60分で99%以上減少させる。一般的なアクリルや塩ビと比べ、耐久性(耐UV、変色)、美観(透過性、視認性)、メンテナンス(消毒不要)の点で優れている。

 同社は、スーパーマーケットやコンビニエンスストアなどのレジカウンターで、感染を気にすることなく買い物ができる「新たな生活様式」が生まれることを期待している。なお、「ウイルスクリーン」は、新エネルギー・産業技術総合開発機構(NEDO)の「循環社会構築型光触媒産業創成プロジェクト」で東京大学との共同研究から生まれたもの。

 

産総研 抗体の高次構造の完全・非破壊的解析技術を開発

, , ,

2020年7月1日

 産業技術総合研究所(産総研)はこのほど、東京大学、中外製薬と、抗体の高次構造(HOS)情報を、製剤条件・低温保存温度で非破壊的に取得できる独自のNMR測定技術を開発したと発表した。

 バイオ医薬の躍進に伴い、その薬効や安全性をHOSに基づいて評価することが求められ、溶液中の抗体タンパク質のHOSの適切性や、熱劣化していないことの確認が必要となる。しかし、抗体などの高分子量バイオ医薬のHOS情報を、溶液組成や測定温度に制約されずに、非破壊的に取得する技術はなかった。産総研が昨年開発した「FC‐TROSY法」により、分子量15万超の抗体の非破壊観測は可能となったが、芳香族アミノ酸の観察に限られる上、フッ素核導入によるタンパク質のHOS変化もゼロではない。

 今回開発した「窒素核観測CRINEPT法(N‐CRINEPT法、窒素15直接観測と交差緩和による低感度核の感度増強法)」は、安定同位体「窒素15」標識をアミド部分に施す必要があるが、フッ素導入は不要でありフッ素によるHOS変化の恐れはない。そしてプロリンを除くすべてのアミノ酸残基由来の信号を取得できる。

 また、分子量15万超のタンパク質のNMR解析に必要であった重水素化が不要となり、重水素化が困難な新型コロナウイルス(SARS‐CoV‐2)の表面タンパク質などの大きな膜タンパク質の解析も可能となった。これにより、HOS情報の網羅性改善と完全非破壊性を実現し、製剤保存条件でのありのままの抗体分子のHOS情報を取得できるようになった。またNMR法で解析可能なタンパク質の数が飛躍的に増えたことにより、抗体医薬の研究開発への貢献が期待される。

 今後は、「N‐CRINEPT法」を研究・開発段階の抗体医薬に適用するなど、社会実装を進める。また、NMR法を用いた創薬支援基盤技術をさらに発展させ、バイオ医薬に限らず低分子、中分子など多様な医薬に対応できる創薬基盤技術プラットホームを構築していく考えだ。

 

NEDO 人工光合成、収率ほぼ100%の光触媒開発

, , , , , , , ,

2020年6月12日

 新エネルギー・産業技術総合開発機構(NEDO)と、三菱ケミカルや三井化学などが参画する人工光合成化学プロセス技術研究組合(ARPChem)はこのほど、紫外光領域ながら世界で初めて100%に近い量子収率(光子の利用効率)で水を水素と酸素に分解する粉末状の半導体光触媒を開発した。信州大学、山口大学、東京大学、産業技術総合研究所(産総研)との共同研究によるもの。これまでの光触媒では量子収率が50%に達するものはほとんどなく、画期的な成果といえる。

 ソーラー水素の実用化に向けた大幅なコスト削減には、太陽光エネルギーの変換効率向上が必要だ。そこには、利用光の波長範囲を広げることと、各波長での量子収率を高めることの2つの要素がある。前者は光触媒のバンドギャップ(電子励起に必要なエネルギー)の幅がカギになり、後者は触媒調製法や助触媒との組み合わせで決まる。今回は後者に注力し、ほぼ100%の量子収率を達成するとともに、触媒の構造・機能・調製方法などを明らかにした。

 代表的な酸化物光触媒SrTiO3(Alドープ)を、フラックス法により2種の結晶面を持つ粒子にすると、光で励起された電子と正孔が各結晶面に選択的に移動する異方的電荷移動という現象が起こる。この特性を利用して、各結晶面に水素生成助触媒(Rh/Cr2O3)と酸素生成助触媒(CoOOH)を光電着法により選択的に担持した。

 その結果、光励起した電子と正孔は再結合せずに各助触媒に選択的に移動するため、吸収光のほぼ全てを水分解反応に利用することに成功した。光励起された電子と正孔の一方通行移動は植物の光合成で行われているが、複雑なタンパク質構造によるため、人工的な再現は非現実的だった。今回の光触媒の構造は簡易であり、高活性光触媒の設計指針となる。

 今回は紫外光しか吸収しないため、降り注ぐ太陽光エネルギーの一部しか利用できない。可視光を吸収するバンドギャップの小さな光触媒に応用することで、太陽エネルギーの利用度は上がる。バンドギャップの小さな化合物での水分解にはさらに高度な触媒性能が求められるが、今回の触媒設計指針を応用することにより、製造プラントの省スペース化や製造コストの低減が期待される。

 NEDOらは、引き続き光エネルギー変換効率の向上を進め、人工光合成技術の早期実現を目指していく考えだ。

産総研 高性能高信頼性n型有機半導体材料の開発に成功

, , , , ,

2020年5月25日

 産業技術総合研究所(産総研)は、東京大学、筑波大学、北里大学と産総研・東大先端オペランド計測技術オープンイノベーションラボラトリが、高信頼性かつ高電荷移動度、大気、熱、バイアス(動作電圧)ストレス耐性を併せ持ち実用に耐えうる塗布型n型半導体材料の開発に世界で初めて成功した。

 この材料は、新しい分子設計指針に基づく電子輸送性BQQDI(ベンゾイソキノリノキノリンジイミド)骨格を持つ塗布型n型有機半導体材料で、IoT社会のキーデバイスである電子タグやマルチセンサーの実用化を加速させることが期待される。

 現在汎用される主としてシリコン系の無機半導体は、電荷移動速度は高いが、重く、硬く、製造にも300~1000℃の高温が必要となる。一方、軽量かつ柔軟で、印刷による低温作製によりコストと環境負荷を大幅に軽減した有機系半導体が注目され、すでに無機半導体のアモルファスシリコンより1桁高い10㎠/V・s級の正孔移動度を持ち、実用に耐える環境ストレス耐性を示す印刷可能なp型半導体が報告されている。多種多様なハイエンドデバイス開発のためには、p型と同程度の安定性、プロセス性およびデバイス性能を併せ持つn型有機半導体が求められていた。

 こうした中、今回、ペリレンジイミド骨格に窒素を導入したBQQDI骨格を持つ有機分子が、大気下で安定なn型有機半導体の母骨格となることを発見。特に、フェネチル基を導入したPhC2‐BQQDIの単結晶が三㎠/V・sの電子移動度および高い信頼性因子を示すことを見出だした。大気下で6カ月以上安定にデバイスを駆動することが明らかとなり、熱ストレスやバイアスストレスに対しても極めて高いデバイス安定性が実証された。

 さらに、この優れた半導体特性が、無機半導体同様のバンド伝導機構に基づくことも実験的に証明された。分子力学計算と伝導計算からも、窒素を介した多点水素結合が分子間振動を抑制し電子移動度を向上させていることが明らかとなった。また、CMOS論理回路に応用することにも成功。

 BQQDI骨格は性能・耐性ともに前例のないn型有機半導体で、次世代エレクトロニクスの研究と産業の戦略材料になるだけにとどまらず、曲がるディスプレー、電子タグ、マルチセンサー、熱電変換素子、薄膜太陽電池などの開発への貢献が期待できる。

 なお、PhC2‐BQQDIは、来月上旬から富士フイルム和光純薬から試薬として販売される予定。

 

東京大学 世界で初めて窒素ドープ型ナノチューブを化学合成

, , ,

2020年4月20日

 東京大学は14日、同大学院理学系研究科の磯部寛之教授の研究グループが、窒素原子の量と位置を完全に制御した窒素ドープ型ナノチューブの化学合成に世界で初めて成功したと発表した。

 カーボンナノチューブやグラフェンなどのナノカーボンは、その発見以来、新材料としての期待が高い。炭素以外の異種元素をドープ(埋め込み)すると、物性が大きく変えられる。なかでも、窒素ドープ型ナノカーボンは半導体利用などの応用研究において注目されており、年間200報に迫る論文が発表されている。しかしこれまで、物理的方法で製造されていることから構造中の窒素原子の位置や数を制御することが不可能であり、新材料開発を阻むボトルネックとなってきた。

 同グループは今回、窒素原子が周期的に埋め込まれた窒素ドープ型ナノチューブの化学合成に成功。昨年独自に開発したベンゼンのカップリング反応を活用したナノチューブ分子化学合成法に対し、新たにピリジン(アミンの一種)を用いることにより、窒素原子を組成・位置・構造などを完全に制御した上で埋め込むことが可能となった。

 ナノチューブ分子の304個の構成主原子のうち、8個を窒素原子とし、窒素原子の含有率を精確に2.6%とすることができた。これまで材料科学分野で検討されてきた窒素ドープ型ナノカーボンの窒素含有率は2~5%の幅であるが、今回の窒素含有率はその幅内に収まっていることから、これまで検討されてきた窒素ドープ型ナノカーボンの電子的性質・化学的性質を正確に探るために適した組成である。

 また最先端X線構造解析法により、窒素上の孤立電子対(ローン・ペア)の存在を明確にした。さらに理論計算の結果、窒素にはナノチューブに電子を注入させやすくする効果があることが分かった。

 窒素ドープ型ナノチューブはp型半導体にもn型半導体にもなることが報告されていたが、今回、窒素が電子を受け取り易くすることで、n型半導体になりやすくさせることが明らかとなった。これらの新知見は、今後、窒素ドープ型ナノカーボン材料の開発を加速させることが期待される。

東京大学 パターニングの電極を半導体に移し取る手法開発

,

2020年3月26日

 東京大学大学院新領域創成科学研究科、同マテリアルイノベーション研究センター、産業技術総合研究所 産総研・東大先端オペランド計測技術オープンイノベーションラボラトリ、物質・材料研究機構 国際ナノアーキテクトニクス研究拠点(WPI‐MANA)の共同研究グループはこのほど、洗濯のりにヒントを得て、高精細にパターニングされた電極を有機半導体に取り付ける手法を開発した。

 さまざまな機能性を持つ電子素子を駆動させるためには、電圧や電流を入出力するための電極が必要不可欠。電極は通常金属で、高真空下で大きなエネルギーを用いて成膜されることが多く、電極の設置面へのダメージを抑え、接着力など下地との相性を最適化することも重要な課題だった。

 こうした中、同研究グループは、洗濯のりの成分であるポリビニルアルコールが乾燥すると固まり、水にあうと簡単に溶けることを利用し、基板上で高精細にパターニングされた電極をポリビニルアルコールなどとともに電極フィルムとして引き剥がし、半導体上に移し取る手法を開発。

 さらに、たった一分子層(厚さ四㎚)からなる有機半導体に金属電極を取り付け、半導体の機能を十分利用できることを実証した。取り付け先の制約は極めて少なく、曲面や生体などへの応用も期待できる。

 今回の成果により、さまざまな積層デバイスへの応用が可能となり、将来の産業応用に際し低コスト・フレキシブルエレクトロニクス用のプロセスとしての利用が見込まれる。

 なお、今回の研究成果は、英国科学雑誌「Scientific Reports」(3月13日版)に掲載された。また、同研究は、日本学術振興会(JSPS)科学研究費補助金「単結晶有機半導体中電子伝導の巨大応力歪効果とフレキシブルメカノエレクトロニクス」「有機単結晶半導体を用いたスピントランジスタの実現」の一環として行われた。

 

東大・産総研など 世界最速の有機トランジスタ実現

, ,

2020年3月24日

 東京大学と産業技術総合研究所(産総研)、物質・材料研究機構の共同研究グループはこのほど、有機半導体単結晶の薄膜上で、チャネル長1㎛スケールの微細加工手法を新たに開発した。

 高移動度と短チャネル化を同時に達成したことで、同研究グループが持つこれまでの世界記録を2倍程度更新し、世界最速となる38M㎐の遮断周波数を達成した。また、この有機トランジスタには交流信号を直流信号に変換する整流性があり、100M㎐でもその整流性が失われないことを実証した。

 世界中で有機トランジスタの高速化が進められている中、同研究グループは超短波帯で動作する有機トランジスタの開発に世界で初めて成功した。

 有機半導体は有機溶媒に溶かしたインクから、印刷プロセスにより柔軟性のあるデバイスを作製できることから、次世代半導体材料として期待されている。同研究グループではこれまでに、厚さわずか数分子層(10㎚程度)からなる有機半導体単結晶超薄膜を、大面積で塗布可能な印刷手法を開発している。このような高品質の有機単結晶薄膜では、高い移動度が実現されており、有機トランジスタの高速化に極めて有望だ。

 半導体集積デバイスの応答周波数は、論理演算を担うトランジスタの移動度と、そのチャネル長に依存する。微細加工手法として、フォトレジストを用いたリソグラフィが広く使われているが、多くのフォトレジストは有機半導体薄膜にダメージを与えることが知られており、有機トランジスタでは、リソグラフィによる高移動度と短チャネル化を両立することは困難だった。

 今回、同研究グループは有機半導体単結晶の薄膜上に、フッ素系高分子膜を薄くコーティングすることで、有機半導体でのダメージフリーリソグラフィ手法を新たに開発し、1㎛スケールの微細加工を達成。超短波帯で動作する有機トランジスタの開発に世界で初めて成功した。

 物流管理などに広く用いられている、RFIDタグの通信周波数である13.56M㎐より十分に大きな値であることから、今回作製したデバイスは、無線タグの給電に十分応用可能なレベルに達していると言える。

 さらに、超短波帯はFMラジオ放送やアマチュア無線などの電波として利用されているが、将来、応答周波数がさらに増加することで、超短波帯を利用した長距離無線通信が可能な有機集積回路の実現が期待される。

 また、簡便な印刷プロセスで量産できることから、今後のIoT社会を担う物流管理に用いられる低コストの無線タグや、電磁波から電力を供給する無線給電システムへの幅広い展開が考えられる。